首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在DIL805L型膨胀仪上测定了30MnVS6钢在不同冷却速度下连续冷却时的膨胀曲线,结合金相-硬度法分析其相变规律及影响因素,获得了连续冷却转变曲线。结果表明,30MnVS6钢的临界点为:A_(c1)=629℃,A_(c3)=860℃;当冷却速度≤0.5℃/s时,转变产物为铁素体、珠光体;当冷却速度为1℃/s,转变产物开始出现少量贝氏体、马氏体;冷却速度在1~10℃/s时为铁素体、珠光体、贝氏体和马氏体;当冷却速度≥15℃/s时,转变产物为铁素体、贝氏体和马氏体,珠光体完全消失。  相似文献   

2.
在Gleeble-3800热模拟机上测定了含微量Mo元素CL60钢在不同冷却速度下连续冷却时的膨胀曲线,并采用金相-硬度法,测定了该钢的连续冷却转变曲线(CCT曲线),研究了冷却速度对其显微组织演变以及硬度的影响。结果表明:当冷却速度小于1℃/s时,实验钢的转变产物为先共析铁素体和珠光体组织;当冷却速度增加到2℃/s时,开始发生贝氏体转变;当冷却速度增加到5℃/s时,开始发生马氏体转变;冷却速度在5~10℃/s的范围内时,转变产物为少量铁素体、珠光体、贝氏体和马氏体所组成的混合组织;当冷却速度为15℃/s时,先共析铁素体消失;当冷却速度为20~40℃/s时,转变产物为珠光体和马氏体混合组织;当冷却速度大于50℃/s时,转变产物全部为马氏体组织。随着冷却速度的增大,实验钢的硬度逐渐增大。尽管Mo元素的加入能细化珠光体片间距,但加Mo元素CL60钢在生产过程中得到理想组织的条件更加苛刻。为避免贝氏体、马氏体等非理想组织出现,不同部位的冷却速度须严格控制在2℃/s以下。  相似文献   

3.
采用膨胀仪、光学显微镜和维氏硬度计研究新型槽帮钢的连续冷却转变行为,获得连续冷却转变(CCT)曲线。结果表明,CCT曲线存在高温铁素体-珠光体转变区、中温贝氏体转变区和低温马氏体转变区。随着冷却速度的增大,室温硬度不断提高,微观组织由铁素体-珠光体向贝氏体和马氏体过渡,最终形成单一马氏体组织。在实测冷却曲线中,当冷却速度小于0.14℃/s时,组织主要为高温铁素体-珠光体转变区;当冷却速度为0.14~0.81℃/s时主要为高温、中温复合转变区,室温组织主要为铁素体、珠光体和贝氏体;当冷却速度为0.81~1.62℃/s时为高温、中温和低温复合转变区,室温组织为铁素体、珠光体、贝氏体和马氏体;当冷却速度为4.05℃/s时为中温、低温两相转变区,高温转变区消失,室温组织为贝氏体和马氏体;当冷却速度高于8.10℃/s时,为马氏体单相转变区。随着冷却速度由0.06℃/s提高到40.5℃/s,微观组织由铁素体-珠光体过渡为贝氏体-马氏体,直至单相马氏体组织,其室温显微硬度由195 HV5(冷速为0.06℃/s)增大到515 HV5(冷速为40.5℃/s)。  相似文献   

4.
结合膨胀法和金相-硬度法,利用Gleeble-1500D热模拟机测定了42CrMoA钢的临界点Ac1、Ac3和Ms点,测定了该钢在不同冷却速度下连续冷却时的膨胀曲线,相转变点;分析了连续冷却过程中过冷奥氏体转变过程及转变产物的组织形貌;测定了不同冷却速度下相转变后的硬度,获得了该钢过冷奥氏体连续冷却相转变曲线.结果表明,当冷却速度小于0.1℃/s时,转变产物为铁素体和珠光体组织;当冷却速度0.2~0.6℃/s时转变产物是铁素体、珠光体、贝氏体的混合组织;当冷却速度为0.7~17℃/s时,转变产物是贝氏体和马氏体的混合组织;当冷却速度大于20℃/s时,转变产物为完全马氏体,此次实验并没有获得完全贝氏体.  相似文献   

5.
在Gleeble-3500热模拟试验机上进行49Mn VS3钢的变形-连续冷却膨胀测定,结合金相-硬度法得到试验用钢的动态连续冷却转变曲线(CCT曲线)。结果表明:49Mn VS3钢的Ac1、Ac3分别为741℃、803℃。当冷却速度为0.5~5℃/s时,得到组织为铁素体和珠光体;冷却速度为7℃/s时,主要为细长的针状铁素体+块状铁素体+珠光体+少量贝氏体;10~15℃/s时发生贝氏体转变;15℃/s出现马氏体转变;冷速为20~40℃/s时,则只发生马氏体转变,得到完全的马氏体组织。随着冷却速度的增加,硬度呈先缓慢增大后线性上升。  相似文献   

6.
利用热模拟试验机对XG835NH钢的奥氏体连续冷却动态转变曲线进行了测定和分析。结果表明:冷却速度在0.5℃/s以下,组织为铁素体+珠光体;当冷却速度超过0.5℃/s,小于1℃/s时,组织为铁素体+珠光体+贝氏体混合组织;当冷却速度超过1℃/s时,出现少量马氏体组织;当冷速超过5℃/s时,组织主要为马氏体。实际生产时,通过控制冷却速度,可获得适合拉拔和冷镦的XG835NH钢盘条。  相似文献   

7.
利用热模拟试验机对30CrMnTi钢的奥氏体连续冷却转变(CCT)曲线进行了测定和分析。结果表明:当冷却速度小于1 ℃/s时,可以得到铁素体+珠光体组织;当冷却速度达到1 ℃/s时,即出现贝氏体组织;当冷却速度达到10 ℃/s时,组织基本转变为马氏体。在工业试生产时,通过控制冷却增加在珠光体转变区域的过冷度,同时延长珠光体转变温度区间的停留时间,可以获得晶粒大小合适的铁素体和珠光体组织。  相似文献   

8.
使用DIL805L型膨胀仪分析了曲轴钢的相变规律,得到了其奥氏体连续冷却转变曲线(CCT)。结果表明,试验钢的临界点为:Ac1=682 ℃,Ac3=765 ℃;当冷速为0.2~5 ℃/s时,转变产物为铁素体+珠光体;当冷速大于5 ℃/s时,转变产物为铁素体、珠光体、贝氏体与马氏体的混合组织;当冷速增大到15 ℃/s时,转变产物为贝氏体和马氏体组织;冷速越大冷却后马氏体含量越多,硬度逐渐增加。  相似文献   

9.
在Gleeble-3500热模拟机上测定了Nb-V微合化金中碳非调质钢在不同冷却速率下的膨胀曲线,并联合金相-硬度法,绘制出了Nb-V试验钢的动态CCT曲线。依据所绘试验钢动态CCT曲线,对试验钢在不同冷却速率下组织的转变转变情况进行了分析。结果表明:冷却速率低于2℃/s时,Nb-V钢的显微组织为铁素体和珠光体,冷却速率超过2℃/s时,钢中组织可以观察到贝氏体,随着冷却速率的增加贝氏体含量也明显增加;冷却速率超过10℃/s时,组织中开始出现马氏体;冷却速率超过15℃/s后Nb-V钢显微组织全部为马氏体。贝氏体转变的临界冷却速率为7~10℃/s,马氏体转变的临界冷却速率为10~15℃/s。  相似文献   

10.
采用热膨胀仪测定了C-Mn-Al系TRIP钢在不同冷速下连续冷却转变的膨胀曲线;并运用Thermo-Calc软件,进行了C-Mn-Al系TRIP钢相变的理论计算。结合金相组织观察,研究了其连续冷却转变产物的组织形态。结果表明,当冷速0.5℃/s时,组织由许多多边形先共析铁素体、少量珠光体和无碳化物贝氏体组成;冷速5℃/s时,组织为铁素体和贝氏体;冷速10℃/s时,开始出现马氏体和贝氏体的混合组织。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号