首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We present an automatic image‐recoloring technique for enhancing color contrast for dichromats whose computational cost varies linearly with the number of input pixels. Our approach can be efficiently implemented on GPUs, and we show that for typical image sizes it is up to two orders of magnitude faster than the current state‐of‐the‐art technique. Unlike previous approaches, ours preserve temporal coherence and, therefore, is suitable for video recoloring. We demonstrate the effectiveness of our technique by integrating it into a visualization system and showing, for the first time, real‐time high‐quality recolored visualizations for dichromats.  相似文献   

2.
Yu Ma 《Information Sciences》2009,179(6):830-843
Color deficient persons, especially dichromats, have difficulty in discriminating certain kinds of colors. To help dichromats discriminate colors better, a color transformation method is proposed. The method utilizes the redundancy of color information, changing the colors of a scene into discernable ones for dichromats. The self-organizing map (SOM) algorithm is used to build a nonlinear color map, maintaining the neighboring relations between colors. Results of both subjective observation and quantitative evaluation show that the method can effectively enhance the color discrimination for dichromats. This study provides a new approach to rectify color vision deficiency.  相似文献   

3.
Color vision deficiency (CVD) affects a high percentage of the population worldwide. When seeing a volume visualization result, persons with CVD may be incapable of discriminating the classification information expressed in the image if the color transfer function or the color blending used in the direct volume rendering is not appropriate. Conventional methods used to address this problem adopt advanced image recoloring techniques to enhance the rendering results frame-by-frame; unfortunately, problematic perceptual results may still be generated. This paper proposes an alternative solution that complements the image recoloring scheme by reconfiguring the components of the direct volume rendering (DVR) pipeline. Our approach optimizes the mapped colors of a transfer function to simulate CVD-friendly effect that is generated by applying the image recoloring to the results with the initial transfer function. The optimization process has a low computational complexity, and only needs to be performed once for a given transfer function. To achieve detail-preserving and perceptually natural semi-transparent effects, we introduce a new color composition mode that works in the color space of dichromats. Experimental results and a pilot study demonstrates that our approach can yield dichromats-friendly and consistent volume visualization in real-time.  相似文献   

4.
The US Federal Aviation Administration (FAA) has developed a standard set of colors for coding information on air traffic control (ATC) displays. A significant complication was that the air traffic controller population includes people who have color-vision deficiencies (CVDs). We wrote a software tool to assist the FAA in selecting a preliminary color set. It accepts a set of luminances and chromaticity coordinates as input and: (1) Draws graphics and calculates color-related figures of merit to predict whether the set will be acceptable for color-normal and CVD users; (2) Flags colors and pairings that violate human factors criteria; and (3) Allows designers to adjust the colors and see the resulting changes immediately. The tool has been used to perform a pilot study for the FAA’s color-set development project and should be useful for designing other color-coding sets, also.  相似文献   

5.
This paper proposes a new approach for color transfer between two images. Our method is unique in its consideration of the scene illumination and the constraint that the mapped image must be within the color gamut of the target image. Specifically, our approach first performs a white‐balance step on both images to remove color casts caused by different illuminations in the source and target image. We then align each image to share the same ‘white axis’ and perform a gradient preserving histogram matching technique along this axis to match the tone distribution between the two images. We show that this illuminant‐aware strategy gives a better result than directly working with the original source and target image's luminance channel as done by many previous methods. Afterwards, our method performs a full gamut‐based mapping technique rather than processing each channel separately. This guarantees that the colors of our transferred image lie within the target gamut. Our experimental results show that this combined illuminant‐aware and gamut‐based strategy produces more compelling results than previous methods. We detail our approach and demonstrate its effectiveness on a number of examples.  相似文献   

6.
Many visualization techniques use images containing meaningful color sequences. If such images are converted to grayscale, the sequence is often distorted, compromising the information in the image. We preserve the significance of a color sequence during decolorization by mapping the colors from a source image to a grid in the CIELAB color space. We then identify the most significant hues, and thin the corresponding cells of the grid to approximate a curve in the color space, eliminating outliers using a weighted Laplacian eigenmap. This curve is then mapped to a monotonic sequence of gray levels. The saturation values of the resulting image are combined with the original intensity channels to restore details such as text. Our approach can also be used to recolor images containing color sequences, for instance for viewers with color‐deficient vision, or to interpolate between two images that use the same geometry and color sequence to present different data.  相似文献   

7.
A new method of recovering the original colors of black-and-white (B&W) halftoned images with homogeneous dot patterns is proposed. The conventional inverse halftoning method, which uses a look-up table (LUT), can establish the relation between the halftoned patterns and the corresponding gray levels, while the conventional reversible color to gray conversion method can recover the original colors from a given color-embedded gray image. To accomplish our goal of original color recovery from B&W halftoned patterns, an approach of combining the conventional inverse halftoning and reversible color to gray conversion is presented in this paper. Differently from the conventional method of inverse halftoning via LUT, four LUTs categorized according to the red, green, blue, and gray reference colors are designed to more accurately map a specific B&W halftone pattern into the corresponding color-embedded gray level based on the observation that the shapes of the halftone patterns depend on input colors, thereby increasing the color recovery accuracy. Also, a color mapping method based on a linear regression which models the relation between the recovered colors and the original colors is introduced to adjust the initially recovered colors more closely to the original colors. Experimental results show that unknown original colors can be recovered from B&W halftoned images via the proposed method.  相似文献   

8.
目的 现有的灰度图像彩色化方法为了保证彩色化结果在颜色空间上的一致性,往往采用全局优化的算法,使得图像边界区域易产生过渡平滑现象。为此提出一种局部自适应的灰度图像彩色化方法,在迁移过程中考虑局部邻域像素信息,同时自动调节邻域像素权重,在颜色正确迁移的同时保证清晰的边界信息。方法 首先结合SVM(support vector machine)和ISLIC(improved simple linear iterative clustering)算法获取彩色图像和灰度图像分类结果图;然后在分类基础上,确定灰度图像高置信度像素点,并根据图像纹理特征,在彩色图像中寻找灰度图像的像素匹配点;最后利用自适应权重均值滤波实现高置信度匹配像素点的颜色迁移,并利用迁移结果对低置信度像素点进行颜色扩散,以完成灰度图像彩色化。结果 实验结果显示,本文方法获得的彩色化迁移结果评分均高于3.5分,特别是局部放大区域评价结果均接近或高于4.0分,高于其他现有彩色化方法评价分数。表明本文方法不仅能够保证颜色迁移的准确性和颜色空间的一致性,同时也能获取颜色区分度高的边界细节信息。与现有的典型灰度图像彩色化方法相比,彩色化结果图在颜色迁移的正确性和抑制边界区域颜色的过渡平滑上都有更优的表现。结论 本文算法为灰度图像彩色化过程中抑制颜色越界问题提供了新的指导方法,能有效地应用于遥感、黑白图像/视频处理、医学图像着色等领域。  相似文献   

9.
Colors play particularly important roles in both designing and accessing Web pages. A well-designed color scheme improves the visual aesthetic of Web pages and facilitates user interactions. As far as we know, existing studies on color compatibility assessment and enhancement focus on images, and the assessment and enhancement for Web colors are rare. In order to aid Web designers evaluate and choose colors, this paper investigates color compatibility assessment for Web pages and applies this assessment to Web color editing based on Web screenshots rather than source codes. This study consists of four parts. First, the roles of color design in Web pages are discussed and a screenshot-based approach is proposed for the analysis of Web page regions. Second, a new method for extracting the color theme of a Web page is proposed. Then, we construct an assessment model that attributes scores to the color compatibility of Web pages through transfer learning. Third, we examine Web color transfer and combine it with the learned compatibility assessment model to create a new application that recommends colors for Web design. Lastly, the evaluation results suggest that the constructed compatibility assessment model and the proposed color transfer technique are effective and are superior over conventional methods. User studies suggest that our color recommendation application can generate new Web page screenshots that have higher color compatibility scores in comparison with those of the original pages.  相似文献   

10.
We present a design technique for colors with the purpose of lowering the energy consumption of the display device. Our approach is based on a screen space variant energy model. The result of our design is a set of distinguishable iso-lightness colors guided by perceptual principles. We present two variations of our approach. One is based on a set of discrete user-named (categorical) colors, which are analyzed according to their energy consumption. The second is based on the constrained continuous optimization of color energy in the perceptually uniform CIELAB color space. We quantitatively compare our two approaches with a traditional choice of colors, demonstrating that we typically save approximately 40 percent of the energy. The color sets are applied to examples from the 2D visualization of nominal data and volume rendering of 3D scalar fields.  相似文献   

11.
为了快速有效地检测图像中的显著性区域,利用颜色通道差异信息和空间信息,提出了一种基于颜色通道比较的显著性检测算法. 该算法将显著性检测任务看作对图像前景区域和背景区域进行分离和识别的过程,首先基于RGB颜色空间构造了一组反映不同色彩信息的颜色通道,通过通道比较将不同颜色的区域分离开,然后通过分析空间信息选择出属于前景的区域,最后对所有前景区域进行合并得到最终的显著图. 我们在两个公开数据集上与现有的一些检测算法进行了对比试验,结果表明该算法具有较低的计算复杂度以及较高的检测准确率和召回率,证明该算法是简单有效的.  相似文献   

12.
Typically searching image collections is based on features of the images. In most cases the features are based on the color histogram of the images. Similarity search based on color histograms is very efficient, but the quality of the search results is often rather poor. One of the reasons is that histogram-based systems only support a specific form of global similarity using the whole histogram as one vector. But there is more information in a histogram than the distribution of colors. This paper has two contributions: (1) a new generalized similarity search method based on a wavelet transformation of the color histograms and (2) a new effectiveness measure for image similarity search. Our generalized similarity search method has been developed to allow the user to search for images with similarities on arbitrary detail levels of the color histogram. We show that our new approach is more general and more effective than previous approaches while retaining a competitive performance.  相似文献   

13.
Color quantization is a common image processing technique where full color images are to be displayed using a limited palette of colors. The choice of a good palette is crucial as it directly determines the quality of the resulting image. Standard quantization approaches aim to minimize the mean squared error (MSE) between the original and the quantized image, which does not correspond well to how humans perceive the image differences. In this article, we introduce a color quantization algorithm that hybridizes an optimization scheme based with an image quality metric that mimics the human visual system. Rather than minimizing the MSE, its objective is to maximize the image fidelity as evaluated by S‐CIELAB, an image quality metric that has been shown to work well for various image processing tasks. In particular, we employ a variant of simulated annealing with the objective function describing the S‐CIELAB image quality of the quantized image compared with its original. Experimental results based on a set of standard images demonstrate the superiority of our approach in terms of achieved image quality.  相似文献   

14.
A large number of output devices in use today are either bilevel or can produce only a limited number of display levels (gray-scale or color). Most color graphics terminals conforming to Enhanced Graphics Adapter (EGA), Professional Graphics Adapter (PGA), or Video Graphics Array (VGA) standards can display from 16–256 colors, whereas real-world (externally acquired) images constitute typically 16M colors. In this paper, a new color quantization algorithm has been proposed which maps an original image into an output image with a limited number of colors, while still preserving the image quality. The algorithm itself is based on the concepts of vector quantization where a color vector is defined by red, green, and blue components and, based on a random sampling of the input image, a color mapping table is generated. The random sampling provides an estimate of the color distribution of the input image, which is then further combined by a clustering technique to derive the desired number of output colors. A mapping process results in a limited-color output image which is optionally preprocessed (in cases where the number of output colors is very small) by a pseudo-random dithering algorithm rendering a high-quality output. This postprocessing step is particularly useful in images with very few output colors, e.g., 16. Through examples, it is shown that input images with over 16M colors can be easily displayed in as few as 16 colors, with negligible degradation in quality.  相似文献   

15.

Most of the works addressing segmentation of color images use clustering-based methods; the drawback with such methods is that they require a priori knowledge of the amount of clusters, so the number of clusters is set depending on the nature of the scene so as not to lose color features of the scene. Other works that employ different unsupervised learning-based methods use the colors of the given image, but the classifying method employed is retrained again when a new image is given. Humans have the nature capability to: (1) recognize colors by using their previous knowledge, that is, they do not need to learn to identify colors every time they observe a new image and, (2) within a scene, humans can recognize regions or objects by their chromaticity features. Hence, in this paper we propose to emulate the human color perception for color image segmentation. We train a three-layered self-organizing map with chromaticity samples so that the neural network is able to segment color images by their chromaticity features. When training is finished, we use the same neural network to process several images, without training it again and without specifying, to some extent, the number of colors the image have. The hue component of colors is extracted by mapping the input image from the RGB space to the HSV space. We test our proposal using the Berkeley segmentation database and compare quantitatively our results with related works; according to the results comparison, we claim that our approach is competitive.

  相似文献   

16.
Human perception involves many features like contours, shapes, textures, and colors to name a few. Whereas several geometric models for contours, shapes and textures perception have been proposed, the geometry of color perception has received very little attention, possibly due to the fact that our perception of colors is still not fully understood. Nonetheless, there exists a class of mathematical models, gathered under the name Retinex, which aim at modeling the color perception of an image, which are inspired by psychophysical/physiological knowledge about color perception, and which can geometrically be viewed as the averaging of perceptual distances between image pixels. Some of the Retinex models turn out to be associated with an efficient image processing technique for the correction of camera output images. The aim of this paper is to show that this image processing technique can be improved by including more properties of the human visual system. To that purpose, we first present a generalization of the perceptual distance between image pixels by considering the parallel transport map associated with a covariant derivative on a vector bundle, from which can be derived a new image processing model for color images correction. Then, we show that the family of covariant derivatives constructed in Batard and Sochen (J Math Imaging Vis 48(3):517–543 2014) can model some color appearance phenomena related to brightness perception. Finally, we conduct experiments in which we show that the image processing techniques induced by these covariant derivatives outperform the original approach.  相似文献   

17.
Road sign detection plays a critical role in automatic driver assistance systems. Road signs possess a number of unique visual qualities in images due to their specific colors and symmetric shapes. In this paper, road signs are detected by a two-level hierarchical framework that considers both color and shape of the signs. To address the problem of low image contrast, we propose a new color visual saliency segmentation algorithm, which uses the ratios of enhanced and normalized color values to capture color information. To improve computation efficiency and reduce false alarm rate, we modify the fast radial symmetry transform (RST) algorithm, and propose to use an edge pairwise voting scheme to group feature points based on their underlying symmetry in the candidate regions. Experimental results on several benchmarking datasets demonstrate the superiority of our method over the state-of-the-arts on both efficiency and robustness.  相似文献   

18.
This paper put forward a new method of co-occurrence matrix to describe image features. This method can express the spatial correlation of textons. During the course of feature extracting, we have quantized the original images into 256 colors and computed color gradient from the RGB vector space, and then calculated the statistical information of textons to describe image features. Image retrieval experimental results have shown that our proposed method has the discrimination power of color, texture and shape features, the performances are better than that of GLCM and CCG.  相似文献   

19.
This paper presents an image editing framework where users use reference images to indicate desired color edits. In our approach, users specify pairs of strokes to indicate corresponding regions in both the original and the reference image that should have the same color “style”. Within each stroke pair, a nonlinear constrained parametric transfer model is used to transfer the reference colors to the original. We estimate the model parameters by matching color distributions, under constraints that ensure no visual artifacts are present in the transfer result. To perform transfer on the whole image, we employ optimization methods to propagate the model parameters defined at each stroke location to spatially‐close regions of similar appearance. This stroke‐based formulation requires minimal user effort while retaining the high degree of user control necessary to allow artistic interpretations. We demonstrate our approach by performing color transfer on a number of image pairs varying in content and style, and show that our algorithm outperforms state‐of‐the‐art color transfer methods on both user‐controllability and visual qualities of the transfer results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号