首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
基于超辐射机理相对论返波管由短脉冲电子束(脉宽几个纳秒)驱动,利用短脉冲电子束的超辐射效应能产生高峰值功率、高峰值转换效率、快速上升前沿的纳秒/亚纳秒微波脉冲。本文对近几年来国内外超辐射返波管器件实验研究进行了全面的评述,报道了超辐射返波管器件的最新进展及趋势,并指出发展中存在的一些关键问题,为开展返波管器件中的超辐射机理研究提供了详实的资料。  相似文献   

2.
近年来热阴极特别是钪系阴极得到充分发展,有望成为高功率微波的电子源。提出一种基于热阴极的新型“面包圈”式电子枪模型,以此电子枪作为相对论返波管的环形电子束发射源。通过仿真软件CST PARTICLE STUDIO对模型进行仿真验证,所得电子枪发射电流为786 A,阴极发射电流密度为30 A/cm2,电子束密度为305 A/cm2,电子通过率为99.9%。最后对热阴极在高功率微波器件中的应用进行了初步探索。  相似文献   

3.
变阻抗相对论返波管的研究   总被引:4,自引:0,他引:4  
根据相对论返波管(RBWO)的非线性理论,数值模拟了耦合阻抗单步跃变型RBWO效率与束流参量、耦合阻抗跃变位置、高低耦合阻抗比值的依赖关系,结果表明器件最优化效率可达到50%,设计制造了一个X波段高功率耦合阻抗单步跃变型RBWO,运用全电磁粒子模拟程序仿真了器件中注波互作用过程,预见出器件功率、效率、频率等性能参量,在电子注电流、注加速电压、互作用区长度相同的实验条件下,测得变阻抗器件实验效率约为均匀阻抗型器件效率的2倍。  相似文献   

4.
根据相对论返波管(RBWO)的非线性理论,数值模拟了耦合阻抗单步跃变型RBWO效率与束流参量、耦合阻抗跃变位置、高低耦合阻抗比值的依赖关系,结果表明器件最优化效率可达到50%.设计制造了一个X波段高功率耦合阻抗单步跃变型RBWO,运用全电磁粒子模拟程序仿真了器件中注波互作用过程,预见出器件功率、效率、频率等性能参量.在电子注电流、注加速电压、互作用区长度相同的实验条件下,测得变阻抗器件实验效率约为均匀阻抗型器件效率的2倍.  相似文献   

5.
同轴型相对论返波管的粒子模拟研究   总被引:7,自引:1,他引:7  
本文提出和设计了一种X波段大直径同轴相对论返波管,同时域有限差分法数值计算了器件慢波结构中TMon模式的色散关系,耦合阻抗,运用粒子模拟程序仿真了器件中波互作用的非线性物理过程,预见了器件输出功率,效率,工作频率,并对器件功率与慢波结构尺寸,电子波束流参数,引导磁场强度之关系进行了优化分析。  相似文献   

6.
首先通过粒子模拟设计了一个X波段的低磁场返波管振荡器,得到功率为520MW、频率为7.9GHz的微波输出;然后根据模拟结果设计加工了一个磁场强度为0.46T的小型化永磁磁体;最后在加速器上对永磁包装返波管振荡器进行了实验研究。当电子能量为630keV、束流约为6.7kA时,返波管振荡器得到频率为8.0GHz、功率为510MW、脉冲半高宽约15ns的微波输出。  相似文献   

7.
高功率相对论返波振荡器的研究   总被引:2,自引:0,他引:2  
本文用自洽的线性场理论对相论返波管进行了分析和数值计算,预见出器件的工作频率及特性,报道了X波段相对论返波管实验结果:器件在束流1.8kA,束能450keV的相对论电子注驱动下,在中心频率9.30GHz处产生了峰值功率达100MW的微波辐射。运用全电磁的相对论的21/2维粒子模拟程序MAGIC模拟了返波管中注波互作用的非线性过程。最后对实验结果,线性理论分析结果,MAGIC模拟结果进行了全面的比较  相似文献   

8.
9.
为实现高功率微波(HPM)系统的小型化,设计一个S波段较低磁场相对论返波管(RBWO)振荡器.针对低磁场特点,分析慢波结构、引导磁场、束压、束流等对输出微波的影响,通过模拟软件(PIC)优化结构.以此设计引导磁场为0.24 T,电子束束压为725 kV,束流为6 kA,频率为3.53 GHz,输出微波功率为1.22 G...  相似文献   

10.
基于现有永磁磁体的参数,并结合高功率微波器件的优点,设计了一个X 波段低磁场相对论返波管振荡器,当引导磁场强度为0. 48T、二极管束压和束流分别为530 kV 和7. 0 kA 时,通过粒子模拟软件得到频率9. 42 GHz、功率1. 11GW 的模拟微波输出,器件束波转换效率30%。在强流电子束加速器平台上进行实验研究,当二极管电压500kV、电流6. 2kA、引导磁场强度0. 46T 时,得到频率为9. 40GHz、功率为900MW、脉宽为32ns 的微波输出。该实验结果为低磁场器件实现高功率、高效率微波输出及永磁包装打下了良好的基础。  相似文献   

11.
相对论返波振荡器的非线性理论   总被引:1,自引:0,他引:1       下载免费PDF全文
本文建立起分析相对论返波管注波互作用过程的自洽非线性工作方程组,理论模型中计及了正向波基波与电子注的异步互作用效应、电子注的空间电荷效应.运用四阶龙格一库塔法编制了数值求解工作方程组的Fortran程序,对均匀耦合阻抗型器件和耦合阻抗单阶跃变型器件的效率进行了仿真和优化.数值模拟结果表明正向波基波与同步波在慢波结构起始处的相差,正向波基波与电子注的异步互作用效应能显著地影响相对论返波管效率,均匀阻抗器件运行于最佳状态时,效率可达到27%,耦合阻抗单阶跃变型器件最优化效率可达到50%.  相似文献   

12.
为实现X 波段的相干功率合成,提出了一种高功率的注入锁定相对论返波管模型。器件在结构上分为输入腔和 输出慢波结构:输入腔用于减少注入微波的泄漏,同时腔内的驻波电场可以有效调制电子束;输出慢波段实现调制电子 束的换能输出。模拟表明该结构在注入功率6 kW 的条件下,可以实现2.5 GW输出微波的相位控制。  相似文献   

13.
为了提高返波管的工作效率,本文模拟设计了一个X 波段非均匀周期慢波结构的相对论返波管。模拟结果表 明:在电压为719kV,电流为10.2kA,磁场为3.0T 条件下,微波输出功率为2.81GW,工作频率为9.04GHz,效率为 38.3%,输出模式为TM01 模。模拟结果表明,采用非均匀周期慢波结构有效地提高了器件的工作效率。论文同时模拟 研究了电子束电压对器件输出功率、效率、工作频率的影响。  相似文献   

14.
从线性化的Vlasov方程出发,研究了相对论返波管中产生的微波功率与磁场的关系,给出了低引导磁场相对论返波管振荡器的设计准则;设计了一个高效率的高功率返波管振荡器,通过采用过模的分段、非均匀慢波结构,实现器件的高效率、高功率运行,同时通过在慢波结构末端添加部分反射腔来降低引导磁场强度.当引导磁场强度为0.6T、电子能量和束流分别为800 keV和7.6kA时,采用2.5维Particle in Cell(PIC)程序模拟得到频率为9.6 GHz、功率为1.85 GW的微波输出.  相似文献   

15.
为了实现相对论返波管振荡器(RBWO)永磁包装,本文采用Magic模拟软件在0.5T低磁场相对论返波管(RBWO)器件结构基础上,通过在器件慢波结构末端添加一个部分反射腔,减小电子束质量对束波转换影响,即减小引导磁场的影响,实现了Ku波段相对论返波管振荡器0.3T磁场下运行.当电子束束压600kV、电子束束流7kA时,模拟得到器件输出微波功率740MW,效率18%.尽管该器件的效率低于0.5T磁场下的效率(25%),然而0.3T引导磁场在工程上更容易实现.结合小型化的脉冲功率源进行实验研究,当二极管束压580kV、束流6.5kA,实验获得功率600MW,频率13.10GHz,脉宽25ns的微波输出,该器件的研制可以促进高功率微波(HPM)系统小型化的发展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号