首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
采用马来酸酐接枝改性聚丙烯(MPP)为增容剂制备了聚丙烯/尼龙6(PP/PA6)共混物,研究了MPP增容PP/PA6共混物的形态结构和热行为,探讨了MPP增容PP/PA6共混物的增容机理.结果表明: PP/PA6共混物为热力学不相容的海岛型两相结构.MPP的加入改善了PA6与PP的相容性,使两相分散均匀.MPP对PP/PA6共混物的增容机理可用界面--分散相表面改性模型来描述.  相似文献   

2.
采用MAH一步法原位增容PP/PA6共混物,研究MAH和DCP的用量对PP/PA6共混物力学性能的影响,并通过与PP-g-MAH增容PP/PA6共混体系对比,发现MAH原位增容可有效提高PP/PA6共混体系的力学性能.一步法原位增容工艺简单,成本低.  相似文献   

3.
MPP增容PP/PA6共混物的形态结构与增容机理   总被引:2,自引:0,他引:2  
采用马来酸酐接枝改性聚丙烯(MPP)为增容剂制备了聚丙烯/尼龙6(PP/PA6)共混物,研究了MPP增容PP/PA6共混物的形态结构和热行为,探讨了MPP增容PP/PA6共混物的增容机理。结果表明:PP/PA6共混物为热力学不相容的海岛型两相结构。MPP的加入改善了PA6与PP的相容性,使两相分散均匀,MPP对PP/PA6共混物的增容机理可用界面——分散相表面改性模型来描述。  相似文献   

4.
利用热塑性IPN技术制备PP/PA6共混物,通过方差分析讨论了PP含量、溶胀温度、溶胀时间对热塑性IPN PP/PA6共混材料力学性能的影响,利用红外光谱仪对共混材料PP/PA6的结构进行表征同时利用扫描电镜对PP和热塑性IPN PP/PA6的断口形貌进行观察,发现利用热塑性IPN技术来制备的PP/PA6共混物中PP与PA6之间具有一定的相容性。  相似文献   

5.
采用熔融共混方法制备了苯乙烯-马来酸酐共聚物(SMA)增容的ABS/PA6共混物,用扫描电镜分析(SEM)、动态力学分析(DMA)对ABS/PA6共混物结构进行了表征,结果表明:未加相容剂的ABS/PA6二元共混物中,分散相易聚集,分散相粒径分布不均匀,相界面清晰,相容性差;加入相容剂后,ABS/PA6共混物的分散相粒径明显减小,分散相粒径分布均匀,单位体积上分散相的界面面积增大,在ABS含量为55%时,界面面积最小,ABS/PA6共混物发生相反转的范围变宽,且向高体积分数的PA6移动.  相似文献   

6.
研究了橡塑比、过氧化物复合硫化体系及KH-570硅烷偶联剂对动态硫化EPDM/PP/SiO2共混物的力学性能的影响。结果表明,随着PP含量的增加,动态硫化EPDM/PP/SiO2共混物的力学性能和硬度增加,但压缩永久变形增加,断裂伸长率却减小。过氧化物复合硫化体系中,当DCP为1.5份时,动态硫化EPDM/PP/SiO2共混物的综合物理力学性能较好。加入KH-570改性的白炭黑,对EPDM/PP/SiO2共混物起到补强的作用;且提高共混物的交联密度,降低压缩永久变形。  相似文献   

7.
为研究不同代数超支化聚酯酰胺(HBPEA)在尼龙6加工中的影响,以4-甲基六氢苯酐(MHHPA)和二异丙醇胺(DIPA)为原料,通过一步法熔融聚合的方式,制备了2种不同代数的超支化聚聚酯酰胺(HBPEA),并将其作为加工助剂与尼龙6(PA6)在双螺杆挤出机中共混。通过红外光谱、热失重分析仪、乌式黏度计分析了两种HBPEA的结构和热稳定性。通过对力学性能、流变行为的测试,研究了HBPEA质量分数对PA6的影响。结果表明:两种不同代数HBPEA的添加,都可以提升HBPEA/PA6共混物的流动性能和机械性能,其中,高代数HBPEA/PA6共混物的提升效果更好。当高代数HBPEA质量分数为1%时,高代数HBPEA/PA6共混物拉伸强度和弯曲强度达到最大值,分别为61.3、183.3 MPa。  相似文献   

8.
采用溶液法、简单机械共混(熔融法Ⅰ)和存在酯-酰胺交换反应共混法(熔融法Ⅱ)将聚对苯二甲酸乙二酯(PET)与聚酰胺66(PA66)共混,系统地进行DSC分析,并对PET/PA66共混体系的相容性作了一定的探讨。结果表明,PET/PA66共混体系为一热力学不相容体系,共混物的相容性数熔融法Ⅱ共混物的为最佳,溶液法共混物的相容性最差。  相似文献   

9.
为了研究功能化改性聚酰胺6(PA6)纤维的可纺性与加工性能,以新型架状硅酸盐(QE粉)为改性剂对PA6进行共混改性,并以共混改性后的母粒与纯PA6为原料制备得到QE/PA6并列纤维,采用毛细管流变仪对QE/PA6共混物的拉伸流变性能进行研究,利用扫描电镜(SEM)、XL-2纱线强伸度仪对QE/PA6并列纤维的表面形态及力学性能进行表征。研究结果表明:QE/PA6共混熔体为拉伸变稀型流体,共混熔体的拉伸黏度和拉伸应力随着QE粉含量的增加而增大,当拉伸应变速率为421.14/s,QE粉质量分数为1 wt%、2 wt%和3 wt%时,复合材料拉伸黏度较纯PA6分别提高28.26%、46.74%和67.39%;共混熔体的拉伸黏度随温度的升高而下降,QE粉的引入提高了QE/PA6复合材料熔体的拉伸流动活化能,使得拉伸黏度对温度的敏感性提高;采用纺丝、牵伸一步法成功制得QE/PA6并列纤维,QE粉末在纤维表面分布均匀,与纯PA6并列纤维相比,QE/PA6并列纤维同样具有良好的强伸性能。  相似文献   

10.
通过双螺杆挤出机制备出PA6/PP/PP-g-MAH(聚酰胺6/聚丙烯/马来酸酐接枝聚丙烯)复合材料,并以PA6/PP/PP-g-MAH为原料,使用化学发泡剂在双螺杆挤出机上制得PA6/PP/PP-g-MAH发泡材料。利用差示扫描量热仪(DSC)和热场发射扫描电镜(FESEM)研究了PP-g-MAH对PA6/PP/PP-g-MAH中PA6相非等温结晶性能和可发泡性能的影响。研究结果表明:PP-g-MAH的加入对PA6相的熔融行为并没有显著的影响,但却使其结晶温度略有下降;PP-g-MAH的加入并没有改变PA6相晶体的成核方式及生长机理,但能使晶体生长速率有不同程度的下降,PA6相的非等温结晶动力学始终符合Jeziorny和莫志深模型;PA6/PP/PP-g-MAH发泡材料的发泡倍率和泡孔直径随着PP-g-MAH含量的增加而逐渐减小,但其泡孔密度随着PP-g-MAH含量的增加先增加后降低;在实验范围内,当PP-g-MAH含量为5phr时,PA6/PP/PP-g-MAH的可发泡性能最好。  相似文献   

11.
本文研究了聚对苯二甲酸丁二酯(PBT)/聚丙烯(PP)、聚对苯二甲酸丁二酯/聚酰胺6(PA6)和聚对苯二甲酸丁二酯/聚对苯二甲酸乙二酯(PET)三种两元高聚物共混物的粘度对组成的依赖关系,并且对此采用McAllister三体模型以最小二乘法程序进行了拟合。三种共混体系的粘度对组成的依赖关系各不相同:在所研究的温度和切变速率范围内,PBT/PP共混体系是单词变化时,而PBT/PA6和PET/PBT共混体系都出现既有极大值又有极小值的现象。McAllister模型满意地描述了三种共混体系的粘度——组成关系。  相似文献   

12.
本文测定了PBT/PP、PBT/PA6和PBT/PET三种共混体系共混物的挤出物胀大比。研究表明,各种共混物的挤出物胀大比在不同温度下均随切应力的增大而增大,并且在一定的切应力下有温度的依赖性,共混物的挤出胀大并非纯是弹性响应。  相似文献   

13.
通过对共混注塑阻隔容器溶剂渗透率的测试, 研究了注塑成型加工工艺条件、相容剂、改性尼龙对容器阻隔性能的影响。  相似文献   

14.
以聚乙烯接枝马来酸酐(PE-g-MAH)作为反应型增容剂,采用熔体共混直接纺丝的方法制备出PA6/LDPE共混纤维,溶出LDPE基体相,获得不同直径的PA6纳米纤维.通过扫描电镜(SEM)和差示扫描量热(DSC)测试,研究了牵伸倍数、相容剂以及混流板对共混纤维的剥离性能、PA6纳米纤维的直径以及结晶度的影响.结果表明:加入3.5%的相容剂能使PA6超细纤维的直径降低到180 nm以下;增加混流板的组数,导致PA6纳米纤维之间粘连,不易剥离;提高共混纤维拉伸倍数,PA6纤维的直径降低且结晶度增加.在PA6质量分数为55%、相容剂质量分数为3.5%条件下,加入一组混流板,可制备出纤维平均直径在100 nm左右且分布均匀的PA6纳米纤维.  相似文献   

15.
采用差示扫描量热仪(DSC)和动态热机械分析(DMA)研究了由不同配比的尼龙6(PA6)与超高分子量聚乙烯/高密度聚乙烯(UHMWPE/HDPE)所形成的共混物的热性能.结果表明。共混物中PA6和UHMWP/HDPE组分的结晶和熔融是独立的,但相互影响较大.PA6和UHMWPE含量的增加对共混物的初始模量有显著影响.  相似文献   

16.
采用FTIR, SEM, DSC 和力学性能测试研究了力化学方法制备的聚丙烯接枝马来酸酐(PPgMAH)对尼龙6(PA6)/聚丙烯(PP)共混体系的增容作用.结果表明,在共混过程中,PA6与PPgMAH之间发生了相互作用,使增容共混体系的力学性能明显优于未增容体系,增容体系分散相(PP相)粒度明显低于未增容体系,熔融粘度高于未增容体系,增容共混体系PP和PA6的熔点和结晶度低于未增容体系.  相似文献   

17.
尼龙6/聚丙烯共混物结构与性能研究   总被引:2,自引:1,他引:1  
采用FT-IR,SEM,DSC和力学性能测试研究了力化学方法制备的聚丙烯接枝马来酸酐(PP-g-MAH)对尼龙6(PA6)/聚丙烯(PP)共混体系的增容作用。结果表明,在共混过程中,PA6与PP-g-MAH之间发生了相互作用,使增容共混体系的力学性能明显优于未增容体系,增容体系分散相(PP相)粒度明显低于未增容体系,熔融粘度高于未增容体系,增容共混体系PP和PA6的熔点和结晶度低于未增容体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号