首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the last decade, a number of studies have been conducted by various investigators in the design, modeling and testing of solar assisted heat pump systems (SAHPSs). This paper reviews the studies conducted on the energy and exergy analysis of SAHPS systems in Turkey and around the world as of the end of December 2004. The studies undertaken on the SAHPS systems are categorized into four groups as follows: (i) SAHPSs for water heating, (ii) SAHPSs with storage (conventional type) for space heating, (iii) SAHPSs with direct expansion for space heating, and (iv) Solar-assisted ground source heat pump greenhouse heating system (SAGSHPGHS). This paper investigates the studies on SAGSHPs, especially ground-source heat pumps, also known geothermal heat pumps, at the Turkish universities in more detail, by giving Turkey's solar energy potential.  相似文献   

2.
3.
《Applied Thermal Engineering》2003,23(12):1551-1557
Solar radiation has remarkable influence on the thermal performance of evaporators of heat pump systems. This paper proposes a method for considering the influence with correcting the heat transfer coefficient of evaporators. A test setup of a heat pump system was built, and long-term experimental data were obtained. The heat transfer coefficient with solar radiation is 36.2% greater than that without it in the experimental conditions. The correction method presented can be used not only to improve analysis and simulation of the thermal performance and energy consumption of heat pump systems, but also to assist in the design and installation of evaporators and the heat pump systems.  相似文献   

4.
The feasibility of solar assisted heat pump systems for space heating and domestic hot water preheating in Canada is examined by simulating the performance of these systems on a computer using the program WATSUN. Simulations are carried out using meteorological data for seven representative Canadian cities, two different building types, and six types of system configurations. For the solar assisted heat pump system, twenty year life cycle cost comparisons are made with two reference systems, namely a conventional resistance heating system and an air-to-air heat pump system, based on current economic parameters and projected escalation scenarios for electricity rates.Results of the study show that the solar assisted heat pump systems conserve significant amounts of energy over resistance heating and heat pump systems. On the life cycle unit cost basis, solar assisted heat pump systems costs are relatively insensitive to location, but the dependence on building types is substantial with multiplex dwellings showing the least cost. Liquid based dual source solar assisted heat pump systems are found to be cost effective over resistance heating (but not over an air-to-air heat pump system) at some of the locations for multiplex units. They are not cost effective for single family dwellings at the present time.  相似文献   

5.
A solar pond for annual cycle solar energy collection and storage was studied at The Ohio Agricultural Research and Development Center (OARDC), Wooster. It has been used as a thermal energy source for greenhouse heating. A brine-source electric-power-driven heat pump was incorporated into the heat extraction system. Initial results of the field studies indicated that the combined system improved the effectiveness of both the heat pump and the solar pond by enabling a larger temperature cycle within the solar pond.

To study the operation of such a system, a computer simulation model for the heating system was developed. The results of simulations were used to establish a relationship between the system performance and the present design and for sizing the solar energy collection and storage system. Also, the effect of a polystyrene pellet nighttime insulation for the greenhouse was simulated. Increasing the surface area of the OARDC pond was found to be less effective than changing its depth. Thr results showed that a 5 m deep pond with 1.0 m gradient zone significantly improved the overall performance of the system when used as a heat source for a heat pump. Based on the detailed experimental and computer simulation performance analysis, the solar pond-assisted heat pump system has the potential of improved performance compared with convential air source heat pumps.  相似文献   


6.
C.K. Lee  H.N. Lam 《Renewable Energy》2008,33(6):1286-1296
Computer simulation of borehole ground heat exchangers used in geothermal heat pump systems was conducted using three-dimensional implicit finite difference method with rectangular coordinate system. Each borehole was approximated by a square column circumscribed by the borehole radius. Borehole loading profile calculated numerically based on the prescribed borehole temperature profile under quasi-steady state conditions was used to determine the ground temperature and the borehole temperature profile. The two coupled solutions were solved iteratively at each time step. The simulated ground temperature was calibrated using a cylindrical source model by adjusting the grid spacing and adopting a load factor of 1.047 in the difference equation. With constant load applied to a single borehole, neither the borehole temperature nor the borehole loading was constant along the borehole. The ground temperature profiles were not similar at different distances from the borehole. This meant that a single finite difference scheme was not sufficient to estimate the performance of a borefield by superposition. The entire borefield should be discretized simultaneously. Comparison was made between the present method and the finite line source model with superposition. The discrepancies between the results from the two methods increased with the scale of borefield. The introduction of time schedule revealed a discrepancy between the load applied to the ground heat exchanger and that transferred from the borehole to the ground, which was usually assumed to be the same when using analytical models. Hence, in designing a large borefield, the present method should give more precise results in dynamic simulation.  相似文献   

7.
R. Yumruta  M. Ünsal 《Energy》2000,25(12):1508
Annual periodic performance of a solar assisted ground-coupled heat pump space heating system with seasonal energy storage in a hemispherical surface tank is investigated using analytical and computational methods. The system investigated employs solar energy collection and dumping into a seasonal surface tank throughout the whole year with extraction of thermal energy from the tank for space heating during the winter season. A computational model is presented in this study for the prediction of the annual periodic transient behaviour of the system under investigation. The present computational model is based on a hybrid analytical–numerical procedure which facilitates determination of the annual variation of water temperature in the surface tank, the amounts of solar thermal energy collected during each month and the annual periodic performance of the solar aided space heating system.  相似文献   

8.
Solar heating systems with seasonal energy storage have attracted an increasing attention over the past decades. However, studies of such systems using a phase change material (PCM) as seasonal storage medium have not been found in the open literature. In this paper a solar heat pump heating system with seasonal latent heat thermal storage (SHPH–SLHTS) is firstly described. This is followed by reporting the development of a simplified mathematical model for a SHPH–SLHTS system. Using the model developed, the operational performances of a SHPH–SLHTS system which provided space heating to a villa building have been investigated by simulation, and simulation results are reported in this paper.  相似文献   

9.
赵海波  吴坤 《太阳能》2009,(9):35-37,40
建立了非直膨式太阳能水环热泵的采暖季性能仿真模型,该模型包括热泵系统模型、蓄热水箱模型和集热器模型,根据此模型模拟分析了太阳能热泵在不同地区应用的性能系数.  相似文献   

10.
The principle of the workings of a solar thermal water pump with n-pentane as the working fluid is described briefly. The performance of the pump is predicted from the thermodynamic analysis of the cycle of events. Experiments were carried out with a small solar thermal pump having a collector area of 1 m2. The experimental and theoretical results were compared. The experimental results were different from those obtained theoretically for ideal conditions. But, during the course of experimentation a number of constraints were noticed. When the theoretical analysis was appropriately modified to account for these limitations, the resulting agreement was found to be good which validates the model proposed.  相似文献   

11.
《Applied Thermal Engineering》2007,27(8-9):1593-1611
The economic feasibility of the residential solar thermal (ST) cooling system designed in the companion article [1] is ascertained by comparing it with a solar electric (SE) cooling system, and also with the baseline (i.e., control case), a grid dependent, highest efficiency COPC = 5.66 heat pump. The economic scenario is analyzed for 24 cities across the southern USA, south of the 37°N. The SE cooling system provides lifecycle (20 year) savings to the homeowner only where electric rates are high and it is heavily subsidized. The overall societal effect (sum of taxpayer funded rebate and homeowner savings) is actually an increased cost everywhere except the California Central Valley, where the net savings is $1500. In the same valley, The ST cooling system provides greater lifecycle savings to the homeowner with more modest subsidies, and the overall societal effect is a benefit, a savings of $3600. The far and away best location for a ST system is Hawaii, where it affords homeowner savings of $9900 and societal savings of $7600.  相似文献   

12.
In this study, a novel dual-nozzle ejector enhanced vapor-compression cycle (DEVC) for solar assisted air-source heat pump systems is proposed. In DEVC, the use of the dual-nozzle ejector for recovering the expansion losses is a very promising approach to improve the cycle performance. A mathematical model of the DEVC is developed to predict its performance under specified operating conditions. The simulation results indicate that for the range of given operating conditions, the coefficient of performance (COP) and the volumetric heating capacity of the novel cycle using refrigerant R410A are theoretically improved by 4.60–34.03% and 7.81–51.95% over conventional ejector enhanced vapor-compression cycle (CEVC), respectively. The results imply that the solar-air source heat pump systems could take advantage of the best features of the DEVC. The potential use of DEVC therefore deserves further experimental validation. It is expected that this new cycle will be beneficial to developing dual-source coupled heat pump applications.  相似文献   

13.
Combining solar energy and heat pump technology is a very attractive concept. It is able to eliminate some difficulties and disadvantages of using solar dryer systems or solely using heat pump drying separately. Solar assisted heat pump drying systems have been studied and applied since the last decades in order to increase the quality of products where low temperature and well-controlled drying conditions are needed. This paper reviewed studies on the advances in solar heat pump drying systems. Results and observation from the studies of solar assisted heat pump dryer systems indicated that for heat sensitive materials; improved quality control, reduced energy consumption, high coefficient of performance and high thermal efficiency of the dryer were achieved. The way forward and future directions in R&D in this field are further research regarding theoretical and experimental analysis as well as for the replacement of conventional solar dryer or heat pump dryer with solar assisted heat pump drying systems and solar assisted chemical and ground source heat pump dryers which should present energy efficient applications of the technologies.  相似文献   

14.
A modified three-dimensional finite difference model for the borehole ground heat exchangers of a ground-source heat pump (GSHP) system was developed which accounted for multiple ground layers with different thermal properties in the borefield at no groundwater flow. The present model was used to investigate the impact of ignoring ground layers in the thermal response test (TRT) analysis and the subsequent system simulation. It was found that the adoption of an effective ground thermal conductivity and an effective ground volumetric heat capacity for a multi-layer ground determined from a TRT analysis led to very little error in the simulated long term system performance under various ground compositions investigated. The maximum difference occurred for a 3 × 3 borefield in a dual-layer ground which measured 0.5 °C or 3.9% in the rise of the borefield fluid leaving temperature with a cooling-dominated loading profile for 10 years. With the same borefield and ground composition, a dynamic simulation of the complete GSHP system was performed using the TRNSYS simulation software. It was found that the overall system performance based on the present and the old models differed very little. It was concluded that the assumption of a homogeneous ground in a TRT analysis and subsequent system simulation was appropriate and impact of ignoring ground layers was small. A single-ground-layer model, including the analytical models, was sufficient even for a multi-layer ground. This could reduce the computation time significantly, especially when simulating a large borefield.  相似文献   

15.
A simple algorithm to simulate the transient behaviour of a vapour compression heat pump is described. Individual models are developed for various components of the heat pump such as compressor, evaporator, condenser and expansion valve. The components are simulated separately and are combined to form the total system. The compressor is a hermetically sealed, reciprocating piston type with adiabatic compression, the evaporator and condenser are coiled copper tubes, and the expansion valve is assumed to be adiabatic. The transport and thermodynamic properties of the refrigerant used are obtained from empirical equations. The total system is viewed in a simplified manner in order to apply the results of this transient analysis to the behaviour of a chemical process operation, namely, distillation.  相似文献   

16.
苏文  陈汝东 《节能》2002,(4):20-22
讨论了蓄热式热泵的工作原理、特点及设计方法 ,同时介绍了一个实际工程。指出使用蓄热式热泵既可充分合理利用能源 ,降低用户运行费用 ,又为电网提供了一种调荷避峰的好方式。  相似文献   

17.
This communication introduces the basic concepts for techno-economic feasibility assessment of various solar thermal systems in a dynamic and market oriented economic environment. An analytical expression for calculating the payback period is derived by assuming a non-linear increase in maintenance cost and incorporating subsidy and salvage values. Further, a method is evolved to ascertain the lifetime of the system for an optimal return on investment mode, incorporating capital inflation during the lifetime and a non-linear increase in maintenance cost. The results for the payback period have been used, along with the lifetime, to optimize the cost of the system.  相似文献   

18.
土壤蓄热与土壤源热泵集成系统的数值模拟   总被引:1,自引:0,他引:1  
罗苏瑜 《节能》2007,26(6):12-15
结合土壤源热泵技术推广中存在的问题和地下蓄能技术的优点,提出了土壤蓄热与土壤源热泵集成系统及其地下管群换热器的布置方式。并在能量平衡的基础上建立了地下管群换热器蓄热、释热和停止运行的数学模型。通过数值模拟,分析了埋管间距对蓄热与释热的运行特性的影响。  相似文献   

19.
《Exergy》2002,2(4):259-265
Exergy analysis of heat pump—air conditioner systems has been carried out. The irreversibilities due to heat transfer and friction have been considered. The coefficient of performance based on the first law of thermodynamics as a function of various parameters, their optimum values, and the efficiency and coefficient of performance based on exergy analysis have been derived. Based on the exergy analysis, a simulation program has been developed to simulate and evaluate experimental systems. The simulation of a domestic heat pump—air conditioner of 959 W nominal power (Matsushita room air conditioner model CS-XG28M) is then carried out using experimental data. It is found that COP based on the first law varies from 7.40 to 3.85 and the exergy efficiency from 0.37 to 0.25 both a decreasing function of heating or cooling load. The exergy destructions in various components are determined for further study and improvement of its performance.  相似文献   

20.
直膨式太阳能热泵热水器及其热经济性分析   总被引:2,自引:0,他引:2  
介绍了直膨式太阳能辅助热泵热水器(DX-SAHPWH)的基本结构和工作原理.计算了直膨式太阳能辅助热泵热水器、空气源热泵热水器、太阳能热水器、电热水器和燃气热水器的运行能耗.分析了直膨式太阳能辅助热泵热水器的市场潜力、经济性以及社会效益.几种热水器比较结果表明,直膨式太阳能辅助热泵热水器能耗最小,运行费仅为电热水器的1/3,燃气热水器的1/2,空气源热泵热水器的415;与电热水器相比,使用直膨式太阳能辅助热泵热水器,户均年运行费可减少约1500元,2年左右即可回收额外的初投资.直膨式太阳能辅助热泵热水器与空气源热泵热水器的市场价格相当.由于其节能、环保、安全等,自身优势明显,预期该热水器应用前景广阔.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号