首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
The production of structured lipids via acidolysis of high-laurate canola oil (Laurical 15) with EPA in hexane was carried out using lipase from Pseudomonas sp. The optimal reaction conditions used 4% lipase, at a mole ratio of oil to EPA of 1∶3 at 45°C over 36 h. The positional distribution of FA on the glycerol backbone of unmodified oil indicated that lauric acid was mainly located at the sn-1,3 positions. Stereospecific analysis of the oil modified with EPA showed that lauric acid remained mostly esterified to the sn-1,3 positions of the TAG molecules and that EPA was also primarily in the sn-1,3 positions of the TAG molecules. Thus, the resultant structured lipids may have optimal value for use in applications where quick energy release and EPA supplementation are required.  相似文献   

2.
Structured lipids were synthesized by acidolysis of perilla oil and caprylic acid using two lipases, Lipozyme RM IM from Rhizomucor miehei and Lipozyme TL IM from Thermomyces lanuginosa. Effects of molar ratio, reaction time, reaction temperature, enzyme load, and solvent content on acidolysis reactions were studied. The solvent content ranged from 0.0 (solvent-free) to 85.3%. The results showed that the incorporation increased in parallel with solvent content to 49.0% with Lipozyme RM IM and to 63.8% with Lipozyme TL IM. After 24 h incubation in n-hexane, caprylic acids were incorporated to 48.5 mol% with Lipozyme RM IM and to 51.4 mol% with Lipozyme TL IM, respectively, whereas linolenic acid content was reduced from 61.4 to 31.5 mol% with Lipozyme RM IM and to 28.4 mol% with Lipozyme TL IM, respectively. Lipozyme TL IM showed a higher acyl migration rate than Lipozyme RM IM when acidolysis was performed in the reaction system containing n-hexane as a solvent, whereas the difference in acyl migration between the two lipases in the solvent-free system was negligible.  相似文献   

3.
The lipase-catalyzed acidolysis of a single-cell oil (SCO) containing docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) with caprylic acid (CA) was investigated. The targeted products were structured lipids containing CA residues at the sn-1 and -3 positions and a DHA or DPA residue at the sn-2 position of glycerol. Rhizomucor miehei lipase (RML) and Pseudomonas sp. KWI-56 lipase (PSL) were used as the biocatalysts. When PSL was used > 60 mol% of total SCO fatty acids (FA) were exchanged with CA, with DHA and DPA as well as the other saturated FA being exchanged. The content of the triacylglycerols (TG) containing two CA and one DHA or DPA (number of carbon atoms = 41, i.e., C41) residue was high (36%), and the isomer with the desired configuration (unsaturated FA residue at the sn-2 position) represented 77–78% of C41. In the case of RML, CA content reached only 23 mol% in the TG. A large amount of DHA and DPA residues remained unexchanged with RML, so that the resulting oil was rich in TG species containing two or three DHA or DPA residues (46%). TG C41 amounted to 22%, almost all of which had the desired configuration. This result suggested that the difference in the degree of acidolysis by the two enzymes was due to their different selectivity toward DHA and DPA, as well as the difference in their positional specificities.  相似文献   

4.
Solvent-free acidolysis of tristearin with CLA has been carried out in a packed-bed reactor. An immobilized lipase from Thermomyces lanuginosa (Lipozyme TL IM) was employed as the biocatalyst. Elevated temperatures (75°C) were utilized to eliminate solid substrates. The reaction kinetics were modeled by using a rate equation of the general Michaelis-Menten form. Both the extent of incorporation of CLA and the extent to which FFA were released were investigated. Positional analysis of the purified TAG obtained after a pseudo space time of 0.6 h indicated that CLA was preferentially incorporated at the sn-1,3 positions of the glycerol backbone, although 10% of the sn-2 positions were occupied by CLA residues. At a pseudo space time of 0.6 h, 38% of the initial CLA was incorporated in acylglycerols; the associated extent of hydrolysis was 8.3%.  相似文献   

5.
Immobilized lipase, IM60, from Rhizomucor miehei was used as a biocatalyst for the incorporation of capric acid (C10:0) into fish oil originally containing 40.9 mol% eicosapentaenoic (20:5n-3) and 33.0 mol% docosahexaenoic (22:6n-3) acid. Acidolysis was performed with and without organic solvent. Pancreatic lipase-catalyzed sn-2 positional analysis was performed after enzymatic modification. Tocopherol analysis was performed before and after enzymatic modification. Products were analyzed by gas-liquid chromatography. After a 24-h incubation in hexane, there was an average of 43.0±1.6 mol% incorporation of C10:0 into fish oil, while 20:5 and 22:6 decreased to 27.8±2.2 and 23.5±1.3 mol%, respectively. The solvent-free reaction produced an average of 31.8±8.5 mol% C10:0 incorporation, while 20:5 and 22:6 decreased to 33.2±3.3 and 28.3±3.9 mol%, respectively. The effect of incubation time, substrate molar ratio, enzyme load, and added water were also studied. In general, as the enzyme load, molar ratio, and incubation time increased, mol% C10:0 incorporation also increased. The optimal mol% C10:0 incorporation was 41.2% at 48 h for the reaction in hexane and 46.4% at 72 h for the solvent-free reaction. The highest C10:0 incorporation (65.4 mol%) occurred at a molar ratio of 1:8 (fish oil triacylglycerols/capric acid) in hexane. For the solvent-free reaction, the optimal mol% C10:0 incorporation (56.1 mol%) occurred at a molar ratio of 1:6. An enzyme load of 10% gave the highest mol% C10:0 incorporation (41.4 mol%) in hexane; the highest incorporation (38.3 mol%) for the solvent-free reaction occurred at 15% enzyme load. Mol% incorporation of C10:0 declined with increasing amounts of added water. The optimal mol% C10:0 incorporation occurred at 1% added water (47.9 mol%) for the reaction in hexane, and at zero added water for the solvent-free reaction (21.8 mol%). Fish oil containing capric acid was successfully produced and may be nutritionally more beneficial than unmodified oil.  相似文献   

6.
The lipase-assisted acidolysis of high-laurate canola oil (HLCO; Laurical 25) with long-chain n−3 FA (DHA and EPA) was studied. Response surface methodology was used to obtain a maximal incorporation of DHA or EPA into HLCO. The studied process variables were the amount of enzyme (2–6%), reaction temperature (35–55°C), and incubation time (12–36 h). The amount of water added and the mole ratio of substrates (oil to DHA or EPA) were kept at 2% and 1∶3, respectively. All experiments were conducted according to a face-centered cube design. Under optimal conditions (4.79% of enzyme; 46.1°C; 30.1 h), the incorporation of DHA into HLCO was 37.3%. The corresponding maximal incorporation of EPA (61.6%) into Laurical 25 was obtained using 4.6% enzyme, a reaction temperature of 39.9°C, and a reaction period of 26.2 h. Examination of the positional distribution of FA on the glycerol backbone of modified HLCO with DHA showed that the DHA was primarily located in the sn-1,3 positions of the TAG molecules. However, lauric acid also remained mainly in the sn-1,3 positions of the modified oil. For EPA-modified Laurical 25, lauric acid was present mainly in the sn-1,3 positions, whereas EPA was randomly distributed over the three positions.  相似文献   

7.
Lipase-catalyzed acidolysis of menhaden oil with a pinolenic acid (PLA) concentrate, prepared from pine nut oil, was studied in a solvent-free system. The PLA concentrate was prepared by urea complexation of the FA obtained by saponification of pine nut oil. Eight commercial lipases from different sources were screened for their ability to catalyze the acidolysis reaction. Two different types of structured lipids (SL) were synthesized. The first type, which has PLA residues as a primary FA residue at the sn-1,3 positions of the TAG, was synthesized using a 1,3-regiospecific lipase, namely, Lipozyme RM IM from Rhizomucor miehei. The second type of SL, which has PLA residues as a primary FA residue at both the sn-1,3 and sn-2 positions of the TAG, was synthesized using a nonspecific lipase, namely, Novozym 435 from Candida antarctica. The effects of variations in enzyme loading, temperature, and reaction time on PLA incorporation into the oil were monitored by GC analyses. The optimal temperature and enzyme loading for synthesis of the two types of SL were 50°C and 10% of the total weight of substrates for both enzymes. The optimal reaction time for the synthesis with Lipozyme RM IM was 16h, whereas the optimal reaction time for the synthesis mediated by Novozym 435 was 36 h. Pancreatic lipase-catalyzed sn-2 positional analyses were also carried out on the TAG samples.  相似文献   

8.
A new method has been proven successful to obtain high-purity arachidonic acid (AA), an important human nutrient, from fungal single-cell oil via Al2O3-supported CuSO4 column chromatography; the stationary phase is stable and readily reusable. In the first step, the mixed FA extracted from saponified fungal single-cell oil, containing 47.3% AA, were purified via urea inclusion to afford a fraction of PUFA containing 74.9% AA with an 85.9% yield. The enriched AA fraction was subsequently passed through an Al2O3-supported CuSO4 column with a hexane/acetone eluent to provide AA with 90.8% purity at a 46.5% yield. The total yield for the two-step process was 39.9%.  相似文献   

9.
An attempt was made to further increase the content of n-3 polyunsaturated fatty acid (n-3 PUFA) of fish oil by lipase-catalyzed acidolysis (reaction between fish oil and n-3 PUFA-enriched free fatty acid) without solvent. A bioreactor system was constructed composed of a water-jacketed packed-bed column and a substrate reservoir with a circulation pipeline between the packed-bed column and the reservoir. By keeping the temperature of the reservoir at −10°C (for the first 20 h), followed by −20°C (for the subsequent 40 h) during the batch acidolysis, crystals of free fatty acid appeared, which were removed intermittently by a cotton plug packed in the tip of the outlet pipe in the reservoir. The n-3 PUFA content of the triacylglycerol fraction increased a further 10% by the reduced temperature of the reservoir. Bioreactors for Enzymatic Reaction of Fats and Fatty Acid derivatives, Part XV.  相似文献   

10.
PUFA, such as arachidonic acid (AA), have several pharmaceutical applications. An efficient method was developed to obtain high-purity arachidonic acid (AA) from ARASCO, a single-cell oil from Martek (Columbia, MD). The method comprises three steps. In the first step, AA was enriched from saponified ARASCO oil by low-temperature solvent crystallization using a polar, aprotic solvent, which gave a FA fraction containing 75.7% AA with 97.3% yield. The second step involved enriching AA content via lipase-catalyzed selective esterification of FA with lauryl alcohol. When a mixture of 1 g FA/lauryl alcohol (2∶1 mol/mol), 50 mg Candida rugosa lipase, and 0.33 g water was incubated at 50°C for 24 h with stirring at 400 rpm, the AA content in the unesterified FA fraction was as much as 89.3%, with ca. 90% yield. Finally, a solvent extraction procedure, in which acetonitrile was the extracting solvent, was used to enrich AA from FA fraction dissolved in n-hexane. The best results were obtained when 2 g FA was dissolved in 80 mL hexane and extracted twice, each time with 20 mL acetonitrile at −20°C, by allowing 2 h storage. This step gave a FA fraction containing 95.3% AA with 81.2% yield. By using this three-step process the AA content in the saponified single-cell oil (ARASCO) was increased from 38.8 to 95.3% with a total yield of ca. 71%.  相似文献   

11.
Three lipases, isolated previously in our laboratory, and a known lipase fromCandida cylindracea were screened for the enrichment of arachidonic acid (AA). The enzyme fromC. cylindracea was the most effective for the production of oil with high concentration of AA. When a single-cell oil fromMortierella alpina, containing 25% AA, was hydrolyzed with this lipase for 16 h at 35°C, the resulting glycerides contained 50% AA at 52% hydrolysis. After this, no further hydrolysis occurred, even with additional lipase. However, when the glycerides were extracted from the hydrolyzate and were hydrolyzed again with new lipase, the resulting oil contained 60% AA, with a recovery of 75% of its initial AA content. Triglycerides were the main components of the resulting oil. The release of each fatty acid from the oil depended on the hydrolysis rate of its ester. The fatty acid, whose ester is the poorest substrate for the enzyme, is concentrated in the glycerides.  相似文献   

12.
Two-kilogram quantities of structured lipids (SL) of menhaden fish and canola oils containing caprylic acids (8∶0) were produced in a laboratory-scale packed-bed bioreactor by acidolysis catalyzed by an immobilized lipase, Lipozyme IM, from Rhizomucor miehei. SL were characterized and their oxidative stabilities investigated. The SL contained 29.5% 8∶0 for fish oil and 40.15 for canola oil. Polyunsaturated fatty acids (PUFA) of fish oil remained unchanged after the modification while PUFA of canola oil were reduced from 29.6 to 21.2%. Monoenes, especially 18∶1n−9, were completely replaced by 8∶0 in fish oil and reduced from 61.9 to 34.7% in canola oil. Downstream processing of enzymatically produced SL led to loss in natural total tocopherol contents of the fish and canola oils. The effects of antioxidants such as α-tocopherol (TOC), tert-butylhydroxyquinone (TBHQ), and combinations thereof on the oxidative stability of SL were investigated. SL were analyzed for oxidative stability index, peroxide value, conjugated diene content, free fatty acid content, iodine value, saponification number, and thiobarbituric acid value. Iodine value of unmodified fish oil (154.71) was reduced to 144.10 and that of canola oil (114.49) to 97.27 after modification. The SN increased from 183.72 to 242.63 for fish oil and from 172.50 to 227.90 for canola oil. TBHQ exhibited better antioxidant effects than TOC. A combination of TBHQ/TOC also proved to be an effective antioxidant for SL. We suggest the addition of antioxidants to enzymatically produced and purified SL.  相似文献   

13.
Response surface methodology is a statistical design that helps one to determine optimal conditions for an enzyme-catalyzed reaction by performing a minimal number of experiments. This methodology was adapted for modifying coconut oil TAG by using lipase-catalyzed acidolysis in hexane to incorporate n−3 or n−6 PUFA. FFA obtained after hydrolysis of cod liver oil and safflower oil were used as acyl donors. Immobilized lipase, Lipozyme IM60, from Rhizomucor miehei was used for catalyzing the reaction. The reaction conditions—substrate molar ratio, incubation time, and temperature—were optimized. The experimental data were fitted to a response function based on the central composite rotatable design. The optimal conditions generated from models indicated that maximal incorporation of n−3 PUFA occurred at a 1∶4 molar ratio of TAG/FFA when incubation was carried out for 34 h at 54°C. Similarly, maximal incorporation of n−6 FA was predicted at a 1∶3 molar ratio of TAG/FFA when incubated for 48.5 h at 39°C. Experiments conducted at optimized conditions predicted by the equation obtained from response surface methodology yielded structured lipids with 13.65 and 45.5% of n−3 and n−6 FA, respectively. These values agreed well with that predicted by the model. The reactions were also scaled up to 100 g levels in batch reactors with the incorporation level of n−3 and n−6 fatty acids agreeing closely with that observed when the reactions were carried out at lab scale (100 mg). These studies indicated that response surface methodology is a useful tool in predicting the conditions for incorporating desired levels of specific FA during the synthesis of structured lipids.  相似文献   

14.
We attempted to synthesize high-purity structured triacylglycerols (TAG) with caprylic acid (CA) at the 1,3-positions and a polyunsaturated fatty acid (PUFA) at the 2-position by a two-step enzymatic method. The first step was synthesis of TAG of PUFA (TriP), and the second step was acidolysis of TriP with CA. Candida antarctica lipase was effective for the first reaction. When a reaction medium of PUFA/glycerol (3∶1, mol/mol) and 5% immobilized Candida lipase was mixed for 24 h at 40°C and 15 mm Hg, syntheses of TAG of γ-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acids reached 89, 89, 88, and 83%, respectively. In these reactions, the lipase could be used for at least 10 cycles without significant loss of activity. In the second step, the resulting trieicosapentaenoin was acidolyzed at 30°C for 48h with 15 mol parts CA using 7% of immobilized Rhizopus delemar lipase. The CA content in the acylglycerol fraction reached 40 mol%. To increase the content further, the acylglycerols were extracted from the reaction mixture with n-hexane and were allowed to react again with CA under conditions similar to those of the first acidolysis. After three successive acidolysis reactions, the CA content reached 66 mol%. The content of dicapryloyl-eicosapentaenoyl-glycerol reached 86 wt% of acylglycerols, and the ratio of 1,3-dicapryloyl-2-eicosapentaenoyl-glycerol to 1(3),2-dicapryloyl-3(1)-eicosapentaenoyl-glycerol was 98∶2 (w/w). In this reaction, the lipase could be used for at least 20 cycles without significant loss of activity. Repeated acidolysis of the other TriP with CA under similar conditions synthesized 1,3-dicapryloyl-2-γ-linolenoyl-glycerol, 1,3-dicapryloyl-2-arachidonoyl-glycerol, and 1,3-dicapryloyl-2-docosahexaenoyl-glycerol in yields of 58, 87, and 19 wt%, respectively.  相似文献   

15.
Purification of arachidonic acid (AA) from Mortierella alpina single-cell oil was attempted. The process comprised three steps: (i) preparation of FFA by nonselective hydrolysis of the oil with Alcaligenes sp. lipase; (ii) elimination of long-chain saturated FA from the resulting FFA by urea adduct fractionation; and (iii) enrichment of AA through lipase-catalyzed selective esterification with lauryl alcohol (LauOH). In the third step, screening of industrially available lipases indicated that Burkholderia cepacia lipase (Lipase-PS, Amano Enzyme Inc., Aichi, Japan) acted on AA more weakly than on other FA and was the most effective for enrichment of AA in the FFA fraction. When the FFA obtained by urea adduct fractionation were esterified with 2 molar equivalents of LauOH at 30°C for 16 h in a mixture with 20% water and 20 units (U)/g-mixture of Lipase-PS, the esterification reached 39% and the content of AA in the FFA fraction was raised from 61 to 86 wt%. To further increase the content of AA, unesterified FFA were allowed to react again under the same conditions as those in the first selective esterification except for the use of 50 U/g Lipase-PS. A series of procedures raised the content of AA to 97 wt% with a 49% recovery based on the initial content in the single-cell oil. These results indicated that the three-step process for selective esterification with Lipase-PS was effective for purifying AA from the single-cell oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号