首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
压电驱动超精密定位工作台的研究   总被引:8,自引:2,他引:8  
研究、设计了一种压电式超精密微定位工作台。此工作台在伺服电机驱动的滚珠丝杠进给系统的基础上,采用压电陶瓷作为微位移驱动器,柔性铰链为导向机构,对工作台运动位置自动补偿,实现了超精密定位。文中对柔性铰链机构进行了合理的设计,以实现长行程超精密定位。压电陶瓷配合柔性铰链使用使工作台定位精度达到0.01μm,可满足精密、超精密加工需要。  相似文献   

2.
设计了一种超精密压电式微位移机构,此机构以压电陶瓷作为驱动器,以对称杠杆式柔性铰链放大机构作为导向机构,弥补压电陶瓷位移行程过小的缺点.机构输出位移由原来的11.6μm放大到100μm,能够满足许多长行程、超精定位运动的需要.对此微位移机构进行定位精度测试,并将它作为位移补偿装置安装于精密滚珠丝杠副驱动的机床上,机床定位精度由原来的1μm上升到0.01μm,定位精度得到显著提高.  相似文献   

3.
基于APDL的柔性铰链位移放大机构   总被引:1,自引:0,他引:1  
针对压电陶瓷微位移驱动器输出位移范围小的局限性,应用柔性铰链位移放大原理,设计了一种柔性铰链微位移放大机构,提出了柔性铰链杠杆放大机构的参数化数学建模方法,并采用ANSYS参数化程序设计语言(APDL)编写了柔性铰链杠杆放大机构的建模和仿真分析程序。仿真试验表明,所设计的柔性铰链杠杆放大机构的输入位移与输出位移线性度高,实际放大位移与理论值相差5%,完全可以满足机构的微位移放大要求。  相似文献   

4.
新型二维纳米级微动工作台的动力学分析   总被引:14,自引:16,他引:14  
提出一种新型、集成式压电驱动两自由度nm级微定位工作台系统,工作台采用直角柔性平行板铰链,实现X,Y方向的运动,采用杠杆放大柔性铰链机构实现对压电陶瓷位移的放大.并对这种新型结构形式理论分析与实验测试.根据拉格郎日方程建立微动工作台的运动微分方程,推导出系统前两阶固有频率的解析式.采用有限元分析方法对微动工作台进行模态分析,得到微定位工作台有效工作的谐振频率和振型,并对微动工作台的模态频率进行了实验测试.经理论分析、有限元计算和实验测试结果进行对比与分析的一致性说明理论分析的正确性和数值分析的可靠性.  相似文献   

5.
压电双晶片作为驱动的精密定位机构研究   总被引:1,自引:0,他引:1  
设计了一种用柔性铰链作为弹性导轨,压电双晶片作为驱动器,结合三角型放大原理实现的精密定位机构,并采用精密电感式微位移传感器(LVDT)进行位移检测。实验表明,该精密定位机构运动范围为0~25μm,定位精度达到15nm。  相似文献   

6.
提出了一种叠片式柔性铰链导轨工作台,可以在保持柔性铰链微位移工作台高直线度的前提下,大幅度提高行程,同时还保持了柔性铰链微位移工作台无机械爬行现象的优点。采用压电陶瓷电动机作为叠片式柔性铰链工作台的驱动器,压电陶瓷电动机应用超声波驻波或行波驱动,具有定位精度高、行程大、频响高等优点,驱动分辨率可达20nm以下。  相似文献   

7.
本文主要研究气动控制领域的直动式压电气动伺服阀.阀芯运动机构是该阀设计的核心部分,主要由作为动力源的积层式压电驱动器、柔性铰链微位移放大机构、阀芯、弹性回复机构以及相应的连接件组成.设计基于柔性铰链微位移放大机构的阀芯运动机构,结合有限单元法对阀芯运动机构进行静力学与动力学的仿真分析,验证理论分析,为直动式压电气动伺服阀总体设计以及控制策略的选择提供理论依据.  相似文献   

8.
柔性微位移放大机构的设计与动力性能仿真分析   总被引:1,自引:1,他引:0  
为将压电陶瓷驱动器的输出位移进行放大,根据差式位移放大原理设计了一种新型柔性微位移放大机构。分析了直圆柔性铰链的结构参数对铰链刚度的影响。推导了该机构的位移放大倍数和最大应力的计算公式,并建立了柔性微位移放大机构的动力学模型,得到该机构的固有频率计算公式。利用有限元软件对其进行动力性能仿真分析,分析表明:该位移放大机构设计合理且处于稳定的工作状态。  相似文献   

9.
压电陶瓷驱动器是近年发展起来的一种新型微位移控制器件,利用压电陶瓷的逆压电效应使之产生相应的应力和应变,可以驱动二维柔性铰链微动机构实现微位移,达到二维定位的目的.通过分析压电陶瓷的基本理论及其非线性特性和补偿措施,阐明压电陶瓷驱动器直接驱动徽动平台的控制技术.  相似文献   

10.
应用叠片式柔性铰链和压电陶瓷电动机 ,实现了一种大行程柔性导轨可以在保持柔性铰链高直线度的前提下 ,大幅度提高行程 ,同时还保持柔性铰链微位移工作台无机械爬行现象的优点。导轨应用超声波电动机作为叠片式柔性铰链工作台的驱动器 ,驱动分辩率可达 2 0nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号