首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epithelial cells are important target cells for coronavirus infection. Earlier we have shown that transmissible gastroenteritis coronavirus (TGEV) and mouse hepatitis coronavirus (MHV) are released from different sides of porcine and murine epithelial cells, respectively. To study the release of these viruses from the same cells, we constructed a porcine LLC-PK1 cell line stably expressing the recombinant MHV receptor cDNA (LMR cells). The MHV and TGEV receptor glycoproteins were shown by immunofluorescence to appear at the surface of the cells and to be functional so that the cells were susceptible to both MHV and TGEV infection. Both coronaviruses entered polarized LMR cells only through the apical surface. Remarkably, while the cells remained susceptible to TGEV for long periods, infectability by MHV decreased with time after plating of the cells onto filters. This was not due to a lack of expression of the MHV receptor, since this glycoprotein was still abundant on the apical surface of these cells. TGEV and MHV appeared to exit LMR cells from opposite sides. Whereas TGEV was released preferentially at the apical membrane, MHV was released preferentially at the basolateral surface. These results show that vesicles containing the two coronaviruses are targeted differently in LMR cells. We propose that the viruses are sorted at the Golgi complex into different transport vesicles that carry information directing them to one of the two surface domains. The apical release of TGEV and the basolateral release of MHV might be factors contributing to the difference in virus spread found between TGEV and MHV in their respective natural hosts, the former causing mainly a localized enteric infection, the latter spreading through the body to other organs.  相似文献   

2.
In addition to the spike (S) glycoprotein that binds to carcinoembryonic antigen-related receptors on the host cell membrane, some strains of mouse coronavirus (mouse hepatitis virus [MHV]) express a hemagglutinin esterase (HE) glycoprotein with hemagglutinating and acetylesterase activity. Virions of strains that do not express HE, such as MHV-A59, can infect mouse fibroblasts in vitro, showing that the HE glycoprotein is not required for infection of these cells. The present work was done to study whether interaction of the HE glycoprotein with carbohydrate moieties could lead to virus entry and infection in the absence of interaction of the S glycoprotein with its receptor glycoprotein, MHVR. The DVIM strain of MHV expresses large amounts of HE glycoprotein, as shown by hemadsorption, acetylesterase activity, and immunoreactivity with antibodies directed against the HE glycoprotein of bovine coronavirus. A monoclonal anti-MHVR antibody, MAb-CC1, blocks binding of virus S glycoprotein to MHVR and blocks infection of MHV strains that do not express HE. MAb-CC1 also prevented MHV-DVIM infection of mouse DBT cells and primary mouse glial cell cultures. Although MDCK-I cells express O-acetylated sialic acid residues on their plasma membranes, these canine cells were resistant to infection with MHV-A59 and MHV-DVIM. Transfection of MDCK-I cells with MHVR cDNA made them susceptible to infection with MHV-A59 and MHV-DVIM. Thus, the HE glycoprotein of an MHV strain did not lead to infection of cultured murine neural cells or of nonmurine cells that express the carbohydrate ligand of the HE glycoprotein. Therefore, interaction of the spike glycoprotein of MHV with its carcinoembryonic antigen-related receptor glycoprotein is required for infectivity of MHV strains whether or not they express the HE glycoprotein.  相似文献   

3.
The primary cellular receptor for mouse hepatitis virus (MHV), a murine coronavirus, is MHVR (also referred to as Bgp1a or C-CAM), a transmembrane glycoprotein with four immunoglobulin-like domains in the murine biliary glycoprotein (Bgp) subfamily of the carcinoembryonic antigen (CEA) family. Other murine glycoproteins in the Bgp subfamily, including Bgp1b and Bgp2, also can serve as MHV receptors when transfected into MHV-resistant cells. Previous studies have shown that the 108-amino-acid N-terminal domain of MHVR is essential for virus receptor activity and is the binding site for monoclonal antibody (MAb) CC1, an antireceptor MAb that blocks MHV infection in vivo and in vitro. To further elucidate the regions of MHVR required for virus receptor activity and MAb CC1 binding, we constructed chimeras between MHVR and other members of the CEA family and tested them for MHV strain A59 (MHV-A59) receptor activity and MAb CC1 binding activity. In addition, we used site-directed mutagenesis to introduce selected amino acid changes into the N-terminal domains of MHVR and these chimeras and tested the abilities of these mutant glycoproteins to bind MAb CC1 and to function as MHV receptors. Several recombinant glycoproteins exhibited virus receptor activity but did not bind MAb CC1, indicating that the virus and MAb binding sites on the N-terminal domain of MHVR are not identical. Analysis of the recombinant glycoproteins showed that a short region of MHVR, between amino acids 34 and 52, is critical for MHV-A59 receptor activity. Additional regions of the N-terminal variable domain and the constant domains, however, greatly affected receptor activity. Thus, the molecular context in which the amino acids critical for MHV-A59 receptor activity are found profoundly influences the virus receptor activity of the glycoprotein.  相似文献   

4.
Apolipoproteins (apo) are secreted preferentially from the basolateral surface of hepatocytes and enterocytes. The polarized secretion of proteins is either mediated by a protein-dependent sorting signal or by a cell-dependent default pathway. In order to determine the mechanism for the polarized secretion of apolipoproteins, we examined the secretion of apoA-I and apoA-II in transfected Madin-Darby canine kidney (MDCK) cells. Transfected MDCK cells and Caco-2 cells were grown as a polarized monolayer on tissue culture inserts, which separate an upper apical compartment from the lower basolateral compartment, and the secretion of apoA-I and apoA-II into the apical and basolateral compartments was quantitated by immunoprecipitation. Caco-2 cells almost exclusively secreted apoA-I and apoA-II basolaterally, with an apical to basolateral ratio of 18:82 for apoA-I, and 11:89 for apoA-II. In contrast, transfected MDCK cells secreted significant amounts of apoA-I and apoA-II into both compartments, but with a bias toward apical secretion and an apical to basolateral ratio of 66:34 and 68:32, respectively. The polarized secretion of MDCK cells was not due to transcytosis, diffusion, or differential recovery. As assessed by density gradient ultracentrifugation, apoA-I and apoA-II secreted from either the apical or basolateral surface were relatively lipid-poor. Overall, these results suggest that the polarized secretion of apoA-I and apoA-II does not occur by a protein-dependent sorting signal, but by a cell-dependent default pathway that leads to preferential basolateral secretion by Caco-2 cells and both apical and basolateral secretion in MDCK cells, but with a bias toward apical secretion.  相似文献   

5.
Tyrosine-dependent sequence motifs are implicated in sorting membrane proteins to the basolateral domain of Madin-Darby canine kidney (MDCK) cells. We find that these motifs are interpreted differentially in various polarized epithelial cell types. The H, K-ATPase beta subunit, which contains a tyrosine-based motif in its cytoplasmic tail, was expressed in MDCK and LLC-PK1 cells. This protein was restricted to the basolateral membrane in MDCK cells, but was localized to the apical membrane in LLC-PK1 cells. Similarly, HA-Y543, a construct in which a tyrosine-based motif was introduced into the cytoplasmic tail of influenza hemagglutinin, was sorted to the basolateral membrane of MDCK cells and retained at the apical membrane of LLC-PK1 cells. A chimera in which the cytoplasmic tail of the H,K-ATPase beta subunit protein was replaced with the analogous region of the Na,K-ATPase beta subunit polypeptide was localized to both surface domains of MDCK cells. Mutation of tyrosine-20 of the H,K-ATPase beta subunit cytoplasmic sequence to an alanine was sufficient to disrupt basolateral localization of this polypeptide. In contrast, these constructs all remain localized to the apical membrane in LLC-PK1 cells. The FcRII-B2 protein bears a di-leucine motif and is found at the basolateral membrane of both MDCK and LLC-PK1 cells. These results demonstrate that polarized epithelia are able to discriminate between different classes of specifically defined membrane protein sorting signals.  相似文献   

6.
Murine coronaviruses such as mouse hepatitis virus (MHV) infect mouse cells via cellular receptors that are isoforms of biliary glycoprotein (Bgp) of the carcinoembryonic antigen gene family (G. S. Dveksler, C. W. Dieffenbach, C. B. Cardellichio, K. McCuaig, M. N. Pensiero, G.-S. Jiang, N. Beauchemin, and K. V. Holmes, J. Virol. 67:1-8, 1993). The Bgp isoforms are generated through alternative splicing of the mouse Bgp1 gene that has two allelic forms called MHVR (or mmCGM1), expressed in MHV-susceptible mouse strains, and mmCGM2, expressed in SJL/J mice, which are resistant to MHV. We here report the cloning and characterization of a new Bgp-related gene designated Bgp2. The Bgp2 cDNA allowed the prediction of a 271-amino-acid glycoprotein with two immunoglobulin domains, a transmembrane, and a putative cytoplasmic tail. There is considerable divergence in the amino acid sequences of the N-terminal domains of the proteins coded by the Bgp1 gene from that of the Bgp2-encoded protein. RNase protection assays and RNA PCR showed that Bgp2 was expressed in BALB/c kidney, colon, and brain tissue, in SJL/J colon and liver tissue, in BALB/c and CD1 spleen tissue, in C3H macrophages, and in mouse rectal carcinoma CMT-93 cells. When Bgp2-transfected hamster cells were challenged with MHV-A59, MHV-JHM, or MHV-3, the Bgp2-encoded protein served as a functional MHV receptor, although with a lower efficiency than that of the MHVR glycoprotein. The Bgp2-mediated virus infection could not be inhibited by monoclonal antibody CC1 that is specific for the N-terminal domain of MHVR. Although CMT-93 cells express both MHVR and Bgp2, infection with the three strains of MHV was blocked by pretreatment with monoclonal antibody CC1, suggesting that MHVR was the only functional receptor in these cells. Thus, a novel murine Bgp gene has been identified that can be coexpressed in inbred mice with the Bgp1 glycoproteins and that can serve as a receptor for MHV strains when expressed in transfected hamster cells.  相似文献   

7.
Retinal pigment epithelial (RPE) cells apically polarize proteins that are basolateral in other epithelia. This reversal may be generated by the association of RPE with photoreceptors and the interphotoreceptor matrix, postnatal expansion of the RPE apical surface, and/or changes in RPE sorting machinery. We compared two proteins exhibiting reversed, apical polarities in RPE cells, neural cell adhesion molecule (N-CAM; 140-kD isoform) and extracellular matrix metalloproteinase inducer (EMMPRIN), with the cognate apical marker, p75-neurotrophin receptor (p75-NTR). N-CAM and p75-NTR were apically localized from birth to adulthood, contrasting with a basolateral to apical switch of EMMPRIN in developing postnatal rat RPE. Morphometric analysis demonstrated that this switch cannot be attributed to expansion of the apical surface of maturing RPE because the basolateral membrane expanded proportionally, maintaining a 3:1 apical/basolateral ratio. Kinetic analysis of polarized surface delivery in MDCK and RPE-J cells showed that EMMPRIN has a basolateral signal in its cytoplasmic tail recognized by both cell lines. In contrast, the basolateral signal of N-CAM is recognized by MDCK cells but not RPE-J cells. Deletion of N-CAM's basolateral signal did not prevent its apical localization in vivo. The data demonstrate that the apical polarity of EMMPRIN and N-CAM in mature RPE results from suppressed decoding of specific basolateral signals resulting in randomized delivery to the cell surface.  相似文献   

8.
All basolateral sorting signals described to date reside in the cytoplasmic domain of proteins, whereas apical targeting motifs have been found to be lumenal. In this report, we demonstrate that wild-type rhodopsin is targeted to the apical plasma membrane via the TGN upon expression in polarized epithelial MDCK cells. Truncated rhodopsin with a deletion of 32 COOH-terminal residues shows a nonpolar steady-state distribution. Addition of the COOH-terminal 39 residues of rhodopsin redirects the basolateral membrane protein CD7 to the apical membrane. Fusion of rhodopsin's cytoplasmic tail to a cytosolic protein glutathione S-transferase (GST) also targets this fusion protein (GST-Rho39Tr) to the apical membrane. The targeting of GST-Rho39Tr requires both the terminal 39 amino acids and the palmitoylation membrane anchor signal provided by the rhodopsin sequence. The apical transport of GST-Rho39Tr can be reversibly blocked at the Golgi complex by low temperature and can be altered by brefeldin A treatment. This indicates that the membrane-associated GST-Rho39Tr protein may be sorted along a yet unidentified pathway that is similar to the secretory pathway in polarized MDCK cells. We conclude that the COOH-terminal tail of rhodopsin contains a novel cytoplasmic apical sorting determinant. This finding further indicates that cytoplasmic sorting machinery may exist in MDCK cells for some apically targeted proteins, analogous to that described for basolaterally targeted proteins.  相似文献   

9.
Polarized expression of most epithelial plasma membrane proteins is achieved by selective transport from the Golgi apparatus or from endosomes to a specific cell surface domain. In Madin-Darby canine kidney (MDCK) cells, basolateral sorting generally depends on distinct cytoplasmic targeting determinants. Inactivation of these signals often resulted in apical expression, suggesting that apical transport of transmembrane proteins occurs either by default or is mediated by widely distributed characteristics of membrane glycoproteins. We tested the hypothesis of N-linked carbohydrates acting as apical targeting signals using three different membrane proteins. The first two are normally not glycosylated and the third one is a glycoprotein. In all three cases, N-linked carbohydrates were clearly able to mediate apical targeting and transport. Cell surface transport of proteins containing cytoplasmic basolateral targeting determinants was not significantly affected by N-linked sugars. In the absence of glycosylation and a basolateral sorting signal, the reporter proteins accumulated in the Golgi complex of MDCK as well as CHO cells, indicating that efficient transport from the Golgi apparatus to the cell surface is signal-mediated in polarized and non-polarized cells.  相似文献   

10.
The function of acidification along the endocytic pathway is not well understood, in part because the perturbants used to modify compartmental pH have global effects and in some cases alter cytoplasmic pH. We have used a new approach to study the effect of pH perturbation on postendocytic traffic in polarized Madin-Darby canine kidney (MDCK) cells. Influenza M2 is a small membrane protein that functions as an acid-activated ion channel and can elevate the pH of the trans-Golgi network and endosomes. We used recombinant adenoviruses to express the M2 protein of influenza virus in polarized MDCK cells stably transfected with the polymeric immunoglobulin (Ig) receptor. Using indirect immunofluorescence and immunoelectron microscopy, M2 was found to be concentrated at the apical plasma membrane and in subapical vesicles; intracellular M2 colocalized partly with internalized IgA in apical recycling endosomes as well as with the trans-Golgi network marker TGN-38. Expression of M2 slowed the rate of IgA transcytosis across polarized MDCK monolayers. The delay in transport occurred after IgA reached the apical recycling endosome, consistent with the localization of intracellular M2. Apical recycling of IgA was also slowed in the presence of M2, whereas basolateral recycling of transferrin and degradation of IgA were unaffected. By contrast, ammonium chloride affected both apical IgA and basolateral transferrin release. Together, our data suggest that M2 expression selectively perturbs acidification in compartments involved in apical delivery without disrupting other postendocytic transport steps.  相似文献   

11.
In polarized HepG2 cells, the fluorescent sphingolipid analogues of glucosylceramide (C6-NBD-GlcCer) and sphingomyelin (C6-NBD-SM) display a preferential localization at the apical and basolateral domain, respectively, which is expressed during apical to basolateral transcytosis of the lipids (van IJzendoorn, S.C.D., M.M. P. Zegers, J.W. Kok, and D. Hoekstra. 1997. J. Cell Biol. 137:347-457). In the present study we have identified a non-Golgi-related, sub-apical compartment (SAC), in which sorting of the lipids occurs. Thus, in the apical to basolateral transcytotic pathway both C6-NBD-GlcCer and C6-NBD-SM accumulate in SAC at 18 degreesC. At this temperature, transcytosing IgA also accumulates, and colocalizes with the lipids. Upon rewarming the cells to 37 degreesC, the lipids are transported from the SAC to their preferred membrane domain. Kinetic evidence is presented that shows in a direct manner that after leaving SAC, sphingomyelin disappears from the apical region of the cell, whereas GlcCer is transferred to the apical, bile canalicular membrane. The sorting event is very specific, as the GlcCer epimer C6-NBD-galactosylceramide, like C6-NBD-SM, is sorted in the SAC and directed to the basolateral surface. It is demonstrated that transport of the lipids to and from SAC is accomplished by a vesicular mechanism, and is in part microtubule dependent. Furthermore, the SAC in HepG2 bear analogy to the apical recycling compartments, previously described in MDCK cells. However, in contrast to the latter, the structural integrity of SAC does not depend on an intact microtubule system. Taken together, we have identified a non-Golgi-related compartment, acting as a "traffic center" in apical to basolateral trafficking and vice versa, and directing the polarized distribution of sphingolipids in hepatic cells.  相似文献   

12.
Budding of retroviruses from polarized epithelial Madin-Darby canine kidney cells (MDCK) takes place specifically at the basolateral membrane surface. This sorting event is suspected to require a specific signal harbored by the viral envelope glycoprotein and it was previously shown that, as for most basolateral proteins, the intracytoplasmic domain plays a crucial role in this targeting phenomenon. It is well known that tyrosine-based motifs are a central element in basolateral targeting signals. In the present study, site-directed mutagenesis was used to generate conservative or non-conservative substitutions of each four intracytoplasmic tyrosines of the human immunodeficiency virus (HIV-1) envelope glycoprotein. This approach revealed that the membrane-proximal tyrosine is essential to ensure both the basolateral localization of envelope glycoprotein and the basolateral targeting of HIV-1 virions. Substitutions of the membrane-proximal tyrosine did not appear to affect incorporation of envelope glycoprotein into the virions, as assayed by virion infectivity and protein content, nor its capability to ensure its role in viral infection, as determined by viral multiplication kinetics. Altogether, these results indicate that the intracytoplasmic domain of the HIV-1 envelope glycoprotein harbors a unique, tyrosine-based, basolateral targeting signal. Such a tyrosine-based targeting signal may play a fundamental role in HIV transmission and pathogenesis.  相似文献   

13.
We previously reported that human cytomegalovirus (CMV) glycoprotein B (gB) is vectorially transported to apical membranes of CMV-infected polarized human retinal pigment epithelial cells propagated on permeable filter supports and that virions egress predominantly from the apical membrane domain. In the present study, we investigated whether gB itself contains autonomous information for apical transport by expressing the molecule in stably transfected Madine-Darby canine kidney (MDCK) cells grown on permeable filter supports. Laser scanning confocal immunofluorescence microscopy and domain-selective biotinylation of surface membrane domains showed that CMV gB was transported to apical membranes independently of other envelope glycoproteins and that it colocalized with proteins in transport vesicles of the biosynthetic and endocytic pathways. Determinants for trafficking to apical membranes were located by evaluating the targeting of gB derivatives with deletions in the lumen, transmembrane (TM) anchor, and carboxyl terminus. Derivative gB(Delta717-747), with an internal deletion in the luminal juxtamembrane sequence that preserved the N- and O-glycosylation sites, retained vectorial transport to apical membranes. In contrast, derivatives that lacked the TM anchor and cytosolic domain (gBDelta646-906) or the TM anchor alone (gBDelta751-771) underwent considerable basolateral targeting. Likewise, derivatives lacking the entire cytosolic domain (gBDelta772-906) or the last 73 amino acids (gBDelta834-906) showed disrupted apical transport. Site-specific mutations that deleted or altered the cluster of acidic residues with a casein kinase II phosphorylation site at the extreme carboxyl terminus, which can serve as an internalization signal, caused partial missorting of gB to basolateral membranes. Our studies indicate that CMV gB contains autonomous information for apical targeting in luminal, TM anchor, and cytosolic domain sequences, forming distinct structural elements that cooperate in vectorial transport in polarized epithelial cells.  相似文献   

14.
Enteropeptidase is a heterodimeric type II membrane protein of the brush border of duodenal enterocytes. In this location, enteropeptidase cleaves and activates trypsinogen, thereby initiating the activation of other intestinal digestive enzymes. Recombinant bovine enteropeptidase was sorted directly to the apical surface of polarized Madin-Darby canine kidney cells. Replacement of the cytoplasmic and signal anchor domains with a cleavable signal peptide (mutant proenteropeptidase lacking the amino-terminal signal anchor domain (dSA-BEK)) caused apical secretion. The additional amino-terminal deletion of a mucin-like domain (HL-BEK) resulted in secretion both apically and basolaterally. Further deletion of the noncatalytic heavy chain (L-BEK) resulted in apical secretion. Thus enteropeptidase appears to have at least three distinct sorting signals as follows: the light chain (L-BEK) directs apical sorting, addition of most of the heavy chain (HL-BEK) inhibits apical sorting, and addition of the mucin-like domain (dSA-BEK) restores apical sorting. Inhibition of N-linked glycosylation with tunicamycin or disruption of microtubules with colchicine caused L-BEK to be secreted equally into apical and basolateral compartments, whereas brefeldin A caused basolateral secretion of L-BEK. Full-length BEK was not found in detergent-resistant raft domains of Madin-Darby canine kidney cells or baby hamster kidney cells. These results suggest apical sorting of enteropeptidase depends on N-linked glycosylation of the serine protease domain and an amino-terminal segment that includes an O-glycosylated mucin-like domain and three potential N-glycosylation sites. In contrast to many apically targeted proteins, enteropeptidase does not form detergent-resistant associations with sphingolipid-cholesterol rafts.  相似文献   

15.
The transcytotic pathway followed by the polymeric IgA receptor (pIgR) carrying its bound ligand (dIgA) from the basolateral to the apical surface of polarized MDCK cells has been mapped using morphological tracers. At 20 degreesC dIgA-pIgR internalize to interconnected groups of vacuoles and tubules that comprise the endosomal compartment and in which they codistribute with internalized transferrin receptors (TR) and epidermal growth factor receptors (EGFR). Upon transfer to 37 degreesC the endosome vacuoles develop long tubules that give rise to a distinctive population of 100-nm-diam cup-shaped vesicles containing pIgR. At the same time, the endosome gives rise to multivesicular endosomes (MVB) enriched in EGFR and to 60-nm-diam basolateral vesicles. The cup-shaped vesicles carry the dIgA/pIgR complexes to the apical surface where they exocytose. Using video microscopy and correlative electron microscopy to study cells grown thin and flat we show that endosome vacuoles tubulate in response to dIgA/pIgR but that the tubules contain TR as well as pIgR. However, we show that TR are removed from these dIgA-induced tubules via clathrin-coated buds and, as a result, the cup-shaped vesicles to which the tubules give rise become enriched in dIgA/pIgR. Taken together with the published information available on pIgR trafficking signals, our observations suggest that the steady-state concentrations of TR and unoccupied pIgR on the basolateral surface of polarized MDCK cells are maintained by a signal-dependent, clathrin-based sorting mechanism that operates along the length of the transcytotic pathway. We propose that the differential sorting of occupied receptors within the MDCK endosome is achieved by this clathrin-based mechanism continuously retrieving receptors like TR from the pathways that deliver pIgR to the apical surface and EGFR to the lysosome.  相似文献   

16.
T-84 and Caco-2 human colon carcinoma cells and Madin-Darby canine kidney (MDCK) cells were used to study binding and transcytosis of iodinated Clostridium botulinum neurotoxin serotypes A, B, and C, as well as tetanus toxin. Specific binding and transcytosis were demonstrated for serotypes A and B in intestinal cells. Using serotype A as an example, the rate of transcytosis by T-84 cells was determined in both apical to basolateral (11.34 fmol/h/cm2) as well as basolateral to apical (8.98 fmol/h/cm2) directions, and by Caco-2 cells in the apical to basolateral (8.42 fmol/h/cm2) direction. Serotype A retained intact di-chain structure during transit through T-84 or Caco-2 cells, and when released on the basolateral side was toxic in vivo to mice and in vitro on mouse phrenic nerve-hemidiaphragm preparations. Serotype C and tetanus toxin did not bind effectively to T-84 cells, nor were they efficiently transcytosed (8-10% of serotype A). MDCK cells did not bind or efficiently transcytose (0.32 fmol/h/cm2) botulinum toxin. Further characterization demonstrated that the rate of transcytosis for serotype A in T-84 cells was increased 66% when vesicle sorting was disrupted by 5 microM brefeldin A, decreased 42% when microtubules were disrupted by 10 microM nocodazole, and decreased 74% at 18 degreesC. Drugs that antagonize toxin action at the nerve terminal, such as bafilomycin A1 (which prevents acidification of endosomes) and methylamine HCl (which neutralizes acidification of endosomes), produced only a modest inhibitory effect on the rate of transcytosis (17-22%). These results may provide an explanation for the mechanism by which botulinum toxin escapes the human gastrointestinal tract, and they may also explain why specific serotypes cause human disease and others do not.  相似文献   

17.
Delivery of newly synthesized membrane-spanning proteins to the apical plasma membrane domain of polarized MDCK epithelial cells is dependent on yet unidentified sorting signals present in the luminal domains of these proteins. In this report we show that structural information for apical sorting of transmembrane neurotrophin receptors (p75(NTR)) is localized to a juxtamembrane region of the extracellular domain that is rich in O-glycosylated serine/threonine residues. An internal deletion of 50 amino acids that removes this stalk domain from p75(NTR) causes the protein to be sorted exclusively of the basolateral plasma membrane. Basolateral sorting stalk-minus p75(NTR) does not occur by default, but requires sequences present in the cytoplasmic domain. The stalk domain is also required for apical secretion of a soluble form of p75(NTR), providing the first demonstration that the same domain can mediate apical sorting of both a membrane-anchored as well as secreted protein. However, the single N-glycan present on p75(NTR) is not required for apical sorting of either transmembrane or secreted forms.  相似文献   

18.
We have studied the biosynthesis and transport of the endogenous caveolins in MDCK cells. We show that in addition to homooligomers of caveolin-1, heterooligomeric complexes of caveolin-1 and -2 are formed in the ER. The oligomers become larger, increasingly detergent insoluble, and phosphorylated on caveolin-2 during transport to the cell surface. In the TGN caveolin-1/-2 heterooligomers are sorted into basolateral vesicles, whereas larger caveolin-1 homooligomers are targeted to the apical side. Caveolin-1 is present on both the apical and basolateral plasma membrane, whereas caveolin-2 is enriched on the basolateral surface where caveolae are present. This suggests that caveolin-1 and -2 heterooligomers are involved in caveolar biogenesis in the basolateral plasma membrane. Anti-caveolin-1 antibodies inhibit the apical delivery of influenza virus hemagglutinin without affecting basolateral transport of vesicular stomatitis virus G protein. Thus, we suggest that caveolin-1 homooligomers play a role in apical transport.  相似文献   

19.
Owing to their scavenging and phagocytic functions, spleen macrophages are regarded to be important in the induction and maintenance of both innate and acquired immune defence mechanisms. In this study, we investigated the role of spleen macrophages in immunity against mouse hepatitis virus strain A59 (MHV-A59). Previous studies showed that spleen and liver macrophages are the first target cells for infection by MHV-A59 in vivo, suggesting that they could be involved in the induction of immune responses against MHV-A59. We used a macrophage depletion technique to deplete macrophages in vivo and studied the induction of virus-specific antibody and cytotoxic T-cell (CTL) responses and non-immune resistance against MHV-A59 in normal and macrophage-depleted mice. Virus titres in spleen and liver increased rapidly in macrophage-depleted mice, resulting in death of mice within 4 days after infection. Elimination of macrophages before immunization with MHV-A59 resulted in increased virus-specific humoral and T-cell proliferative responses. However, virus-specific CTL responses were not altered in macrophage-depleted mice. Our results show that spleen macrophages are of major importance as scavenger cells during MHV-A59 infection and are involved in clearance of virus from the host. In addition, macrophages may be involved in the regulation of acquired immune responses. In the absence of macrophages, increased virus-specific T-cell and antibody responses are detectable, suggesting that macrophages suppress MHV-A59-specific T- and B-cell responses and that other cells serve as antigen-presenting cells.  相似文献   

20.
Transport from the TGN to the basolateral surface involves a rab/N-ethylmaleimide-sensitive fusion protein (NSF)/soluble NSF attachment protein (SNAP)/SNAP receptor (SNARE) mechanism. Apical transport instead is thought to be mediated by detergent-insoluble sphingolipid-cholesterol rafts. By reducing the cholesterol level of living cells by 60-70% with lovastatin and methyl-beta-cyclodextrin, we show that the TGN-to-surface transport of the apical marker protein influenza virus hemagglutinin was slowed down, whereas the transport of the basolateral marker vesicular stomatitis virus glycoprotein as well as the ER-to-Golgi transport of both membrane proteins was not affected. Reduction of transport of hemagglutinin was accompanied by increased solubility in the detergent Triton X-100 and by significant missorting of hemagglutinin to the basolateral membrane. In addition, depletion of cellular cholesterol by lovastatin and methyl-beta-cyclodextrin led to missorting of the apical secretory glycoprotein gp-80, suggesting that gp-80 uses a raft-dependent mechanism for apical sorting. Our data provide for the first time direct evidence for the functional significance of cholesterol in the sorting of apical membrane proteins as well as of apically secreted glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号