首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过等体积浸渍法制备单贵金属Pt/γ-Al2O3和双金属Pt-Ce/γ-Al2O3催化剂,考察Ce对催化剂活性的影响,确定催化剂最优配比。结果表明,当Pt的负载量为质量分数0.5%时,Pt/γ-Al2O3催化活性最高;当Pt的负载量为质量分数0.2%,Ce的负载量为质量分数1.0%时,Pt-Ce/γ-Al2O3催化剂的催化活性最高。Pt-Ce/γ-Al2O3催化剂的甲苯转化率高于Pt/γ-Al2O3催化剂。随着Pt负载量增大,催化剂孔容、孔径减小。粉体式催化剂性能优于整体式催化剂,但差别不大;Ce的添加有助于催化剂活性的提升。  相似文献   

2.
This work investigates performances of supported transition-metal oxide catalysts for the catalytic reduction of SO2 with C2H4 as a reducing agent. Experimental results indicate that the active species, the support, the feed ratio of C2H4/SO2, and pretreatment are all important factors affecting catalyst activity. Fe2O3/γ-Al2O3 was found to be the most active catalyst among six γ-Al2O3-supported metal oxide catalysts tested. With Fe2O3 as the active species, of the supports tested, CeO2 is the most suitable one. Using this Fe2O3/CeO2 catalyst, we found that the optimal Fe content is 10 wt.%, the optimal feed ratio of C2H4/SO2 is 1:1, and the catalyst presulfidized by H2+H2S exhibits a higher performance than those pretreated with H2 or He. Although the feed concentrations of C2H4:SO2 being 3000:3000 ppm provide a higher conversion of SO2, the sulfur yield decreases drastically at temperatures above 300 °C. With higher feed concentrations, maximum yield appears at higher temperatures. The C2H4 temperature-programmed desorption (C2H4-TPD) and SO2-TPD desorption patterns illustrate that Fe2O3/CeO2 can adsorb and desorb C2H4 and SO2 more easily than can Fe2O3/γ-Al2O3. Moreover, the SO2-TPD patterns further show that Fe2O3/γ-Al2O3 is more seriously inhibited by SO2. These findings may properly explain why Fe2O3/CeO2 has a higher activity for the reduction of SO2.  相似文献   

3.
Ag-modified La0.6Sr0.4MnO3-based catalysts with the perovskite-type structure were prepared by using a citric acid sol–gel method, and their catalytic performance for complete oxidation of methanol and ethanol was evaluated and compared with that of the γ-Al2O3-supported catalysts, Ag/γ-Al2O3, Pt/γ-Al2O3, and Pd/γ-Al2O3. The results showed that the Ag-modified La0.6Sr0.4MnO3-based catalysts with the perovskite-type structure displayed the activity significantly higher than that of the supported precious metal catalysts, 0.1%Pd/γ-Al2O3 and 0.1%Pt/γ-Al2O3 in the temperature range of 370–573 K. Over a 6%Ag/20%La0.6Sr0.4MnO3/γ-Al2O3 catalyst, the T95 temperature for methanol oxidation can be as low as 413 K. Even at such low reaction temperature, there were little HCHO and CO detected in the reaction exit-gas. However, for the 0.1%Pd/γ-Al2O3 and 0.1%Pt/γ-Al2O3 catalysts, the HCHO content in the reaction exit-gas reached 200 and 630 ppm at their T95 temperatures. Over a 6%Ag/La0.6Sr0.4MnO3 catalyst, the T95 temperature for ethanol oxidation can be as low as 453 K, with a corresponding content of CH3CHO in the exit-gas at 782 ppm; when ethanol oxidation is performed at 493 K, the content of acetaldehyde in the exit-gas can be below 1 ppm. Characterization of the catalysts by X-ray diffraction (XRD), TEM, XPS, laser Raman spectra (LRS), hydrogen temperature-programmed reduction (H2-TPR) and oxygen temperature-programmed desorption (O2-TPD) methods revealed that both the surface and the bulk phase of the perovskite La0.6Sr0.4MnO3 played important roles in the catalytic oxidation of the alcohols, and that γ-Al2O3 as the bottom carrier could be beneficial in creating a large surface area of catalyst. Moreover, a small amount of Ag+ doped onto the surface of La0.6Sr0.4MnO3 was able to partially occupy the positions of La3+ and Sr2+ due to their similar ionic radii, and thus, became stabilized by the perovskite lattice, which would be in favor of preventing the aggregation of the Ag species on the surface and enhancing the stability of the catalyst. On the other hand, modification of the Ag+ to the surface of La0.6Sr0.4MnO3 resulted in an increase in relative content of the surface O22−/O species highly reactive toward the alcohols and aldehydes as well as CO. Besides, solution of low-valence metal oxides SrO and Ag2O with proper amounts in the lattice of the trivalent metal perovskite-type oxide LaMnO3 would also lead to an increase in the content of the reducible Mnn+ and the formation of anionic vacancies, which would be favorable for the adsorption-activation of oxygen on the functioning catalyst and the transport of the lattice and surface oxygen species. All these factors would contribute to the pronounced improvement of the catalyst performance.  相似文献   

4.
采用铝箔盐酸回流-油柱成型法制备了不同Sn掺杂量的Sn(x)-θ-Al2O3载体,并采用真空浸渍法制备了Pt/Sn(x)-θ-Al2O3催化剂。对制备的催化剂进行XRD、N2物理吸附-脱附、NH3-TPD、H2-TPR和TG-DTA表征,研究了在载体中掺入助剂Sn对Pt/Sn(x)-θ-Al2O3催化剂结构及丙烷脱氢催化反应性能的影响。结果表明,在载体制备过程中掺入Sn,可以提高催化剂反应活性和产物选择性,当Sn掺杂质量分数为1.0%时,催化剂具有最优的丙烷脱氢反应性能,15 h的平均丙烷转化率为32.4%,平均丙烯选择性为95.5%。  相似文献   

5.
李先如  罗沙  顾彬  荣欣  孙承林 《工业催化》2015,23(5):372-377
采用水热处理对γ-Al2O3载体改性,并进行XRD、N2物理吸附-脱附、热重、NH3-TPD及H2-TPR表征。结果表明,γ-Al2O3经过"再水合-焙烧"过程,晶型变好,表面总酸量降低,Pt-Al2O3相互作用增加,提高了Pt Sn K/Al2O3催化剂的丙烷脱氢转化率、选择性及稳定性。其中,140℃处理4 h时,氧化铝负载的Pt Sn K催化剂表现出最优的丙烷脱氢性能,100 h内平均转化率为33.6%,平均选择性97.3%,失活参数为15.9%。  相似文献   

6.
Direct formation of isobutene from n-butane was investigated over zeolite TON and γ-Al2O3 supported platinum and platinum–copper catalysts. Addition of Cu decreases Pt dispersion, irrespective of preparation methods and nature of catalyst supports. The presence of potassium was found to reduce acidity and Pt dispersion. The experiments were performed in a fixed-bed microreactor system operating at 673 K and atmospheric pressure. Changing the support from γ-Al2O3 to TON, shows that n-butane conversion is almost independent of acidity. However, significant changes in products selectivities are observed. The selectivities to isobutene, C1–C3 fractions, and aromatics increases drastically from 3.5 to 32.6%, 20.3 to 27.2%, and 3.0 to 20.6%, respectively, for the TON-supported catalyst whereas dehydrogenation is largely predominant when γ-Al2O3 is used as support. Addition of Cu, as expected, has an adverse effect on n-butane conversion as less active sites are available due to the reduction in Pt dispersion. Though Cu addition has marginal effect on isobutene selectivity, it certainly suppresses hydrogenolysis which evidences a reduction in size of the Pt ensembles at the surface of the Pt particles.  相似文献   

7.
Catalytic performance of Sn/Al2O3 catalysts prepared by impregnation (IM) and sol–gel (SG) method for selective catalytic reduction of NOx by propene under lean burn condition were investigated. The physical properties of catalyst were characterized by BET, XRD, XPS and TPD. The results showed that NO2 had higher reactivity than NO to nitrogen, the maximum NO conversion was 82% on the 5% Sn/Al2O3 (SG) catalyst, and the maximum NO2 conversion reached nearly 100% around 425 °C. Such a temperature of maximum NO conversion was in accordance with those of NOx desorption accompanied with O2 around 450 °C. The activity of NO reduction was enhanced remarkably by the presence of H2O and SO2 at low temperature, and the temperature window was also broadened in the presence of H2O and SO2, however the NOx desorption and NO conversion decreased sharply on the 300 ppm SO2 treated catalyst, the catalytic activity was inhibited by the presence of SO2 due to formation of sulfate species (SO42−) on the catalysts. The presence of oxygen played an essential role in NO reduction, and the activity of the 5% Sn/Al2O3 (SG) was not decreased in the presence of large oxygen.  相似文献   

8.
以浸渍法制备VMo/γ-Al2O3和VMoMg/γ-Al2O3催化剂,考察其催化丙烷氧化脱氢制丙烯的反应活性,采用XRD、UV-Vis DRS和In suit IR对催化剂进行表征。结果表明,V负载质量分数为3%、Mo负载质量分数为7%时的3V7Mo/γ-Al2O3催化剂表现出较好的催化性能;添加Mg后催化剂的催化性能有所改善,反应温度500 ℃时,丙烷转化率为18.19%,丙烯选择性74.76%。丙烷和丙烯在3V7Mo/γ-Al2O3和3V7Mo4Mg/γ-Al2O3催化剂上吸附后,C—H键的H与催化剂活性中心的晶格氧发生作用形成H—O键,且3V7Mo4Mg/γ-Al2O3催化剂上出现C—O键的温度比3V7Mo/γ-Al2O3催化剂高,表明加入Mg有利于提高丙烯选择性。  相似文献   

9.
Zirconium sulfate supported on γ-Al2O3 catalysts were prepared by impregnation of powdered γ-Al2O3 with zirconium sulfate aqueous solution followed by calcining in air at high temperature. For Zr(SO4)2/γ-Al2O3 samples, no diffraction line of zirconium sulfate was observed up to 50 wt.%, indicating good dispersion of Zr(SO4)2 on the surface of γ-Al2O3. The acidity of catalysts increased in proportion to the zirconium sulfate content up to 40 wt.% of Zr(SO4)2. 40-Zr(SO4)2/γ-Al2O3 calcined at 400 °C exhibited maximum catalytic activities for 2-propanol dehydration and cumene dealkylation. The catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation were correlated with the acidity of catalysts measured by ammonia chemisorption method.  相似文献   

10.
Solid catalysts for wet oxidation of nitrogen-containing organic compounds   总被引:2,自引:0,他引:2  
Several solid catalysts (Co3O4/γ-Al2O3, Fe2O3/γ-Al2O3, Mn2O3/γ-Al2O3, Zn–Fe–Mn–Al–O, Pt/γ-Al2O3, Ru/CeO2, Ru/C) have been prepared and used to remove N-containing organic contaminants while processing toxic and hazardous industrial waste waters using wet oxidation by air (WAO). The autoclave tests of catalysts were done to reveal the main advantages of catalysts in water presence at high pressures and temperatures. Catalyst activity was determined with regard to oxygen interaction with model mixtures (water–organic contaminant: acetonitrile, carbamide, dimethyl formamide, or multi-component mixture of aliphatic alcohols). Activity tests were done in a static reactor under ideal mixing regime. Reagents and products were monitored using gas chromatograph Cvet-560, Millichrom-1 HPLC, and routine chemical analysis. Optimum process conditions for the best catalyst (Ru/graphite-like carbon) are as follows: partial oxygen pressure – 1.0 MPa, temperature – 473–513 K. At 0.5–5.0 MPa total pressure and 433–523 K catalysts show high water-resistance and high activity level (residual content of toxic compounds is less than 1%, and no NOx and NH3 are detected). There are no legal restrictions on catalysts operation, since they are harmless to environment.  相似文献   

11.
Oxidation of propene and propane to CO2 and H2O has been studied over Au/Al2O3 and two different Au/CuO/Al2O3 (4 wt.% Au and 7.4 wt.% Au) catalysts and compared with the catalytic behaviour of Au/Co3O4/Al2O3 (4.1 wt.% Au) and Pt/Al2O3 (4.8 wt.% Pt) catalysts. The various characterization techniques employed (XRD, HRTEM, TPR and DR-UV–vis) revealed the presence of metallic gold, along with a highly dispersed CuO (6 wt.% CuO), or more crystalline CuO phase (12 wt.% CuO).

A higher CuO loading does not significantly influence the catalytic performance of the catalyst in propene oxidation, the gold loading appears to be more important. Moreover, it was found that 7.4Au/CuO/Al2O3 is almost as active as Pt/Al2O3, whereas Au/Co3O4/Al2O3 performs less than any of the CuO-containing gold-based catalysts.

The light-off temperature for C3H8 oxidation is significantly higher than for C3H6. For this reaction the particle size effect appears to prevail over the effect of gold loading. The most active catalysts are 4Au/CuO/Al2O3 (gold particles less than 3 nm) and 4Au/Co3O4/Al2O3 (gold particles less than 5 nm).  相似文献   


12.
The photocatalytic properties of sulphated MoOx/γ-Al2O3 catalysts in cyclohexane oxidative dehydrogenation have been determined in a two-dimensional fluidized bed photoreactor and compared to those of sulphated MoOx/TiO2 catalysts. Photocatalytic tests on MoOx/γ-Al2O3 at 8 wt% MoO3 and various sulphate contents showed the selective (100%) formation of cyclohexene, without production of benzene, as instead found with MoOx/TiO2. These results show that the selectivity of photocatalytic cyclohexane oxydehydrogenation is dramatically influenced by the catalyst support.

Maximum cyclohexane conversion and cyclohexene yield of 11% were obtained for SO4 content of 2.6 wt% at 120 °C. Physico-chemical characterisation of catalysts indicates the presence of both octahedral polymolybdate and sulphate species on alumina surface, as previously found for titania. Increasing sulphate load, thermogravimetry evidenced the presence of up to three sulphate species at different thermal stability. The lower activity observed at high sulphate content is likely due to polymolybdate decoration by sulphates.  相似文献   


13.
The performance of the active catalyst 5%V2O5-1.9%MgO/TiO2 in propane oxidative dehydrogenation is investigated under various reactant contact modes: co-feed and redox decoupling using fixed bed and co-feed using fluid bed. Using fixed bed reactor under co-feed conditions, propane is activated easily on the catalyst surface with selectivities ranging from 30 to 75% depending on the degree of conversion. Under varying oxygen partial pressures, especially for higher than the stoichiometric ratio O2/C3H8 = 1/2, nor the propane conversion or the selectivities to propene and COx are affected. The performance of the catalyst in the absence of gas phase oxygen was tested at 400 °C. It was confirmed that the catalyst surface oxygen participates to the activation of propane forming propene and oxidation products with similar selectivities as those obtained under co-feed conditions. The ability of the catalyst to fully restore its activity by oxygen treatment was checked in repetitive reduction–oxidation cycles. Fluid bed reactor using premixed propane–oxygen mixtures was also employed in the study. The catalyst was proved to be very active in the temperature range 300–450 °C attaining selectivities comparable to those of fixed bed.  相似文献   

14.
B. Kerler  A. Martin   《Catalysis Today》2000,61(1-4):9-17
The catalytic partial oxidation of propane in supercritical carbon dioxide has been investigated in a stirred batch reactor. Various metals (oxides) have been used as supported catalysts with respect to their activity and selectivity for the formation of oxygenates. The reactions run with a 1:2.3–2.9:68–108 molar ratio of propane:synthetic air:CO2 at 453–573 K and 80–100 bar. Using a precipitated 2.4 wt.% Co3O4–SiO2 catalyst at 573 K, a total oxygenate (i.e. acetic acid, acetone, acetaldehyde, methanol) selectivity of 59% and a propene selectivity of 21% were obtained at a propane conversion of 12 mol%. The same catalyst has been used to investigate the influence of the supercritical conditions and initial feed composition on the reaction, varying the density of CO2 and the concentration of synthetic air, respectively.  相似文献   

15.
The distribution of gaseous products and the nature of the surface species generated during the selective catalytic reduction of NO with C3H6 in the presence of excess O2 (i.e. C3H6-SCR) were studied over both a 0.4% Co/γ-Al2O3 catalyst and a sulphated 1.2% Ag/γ-Al2O3 catalyst. The results were compared with those previously reported for the C3H6-SCR over 1.2% Ag/γ-Al2O3 and γ-Al2O3. High concentrations of NO2 were observed in the product stream of the SCR reaction over the 0.4% Co/γ-Al2O3 and sulphated 1.2% Ag/γ-Al2O3 materials. The results show that (as in the case of the γ-Al2O3 and also probably that of the 1.2% Ag/γ-Al2O3) the NO2 was formed via an alternative route to the direct oxidation of NO with O2. The yields of NO2 were higher over the Co/γ-Al2O3 than over the other materials and in contrast to the other materials, no NH3 was produced over the Co/γ-Al2O3 catalyst. Based on these results and those of in situ DRIFTS experiments, a global reaction scheme incorporating organo-nitrogen species as key intermediates is proposed. In this scheme, NO, propene and oxygen react to form organo-nitro and/or organo-nitrito adsorbed species, the reaction products of which combine to yield N2. The results reported here suggest that Co preferentially promotes the formation of nitrito-compounds which can readily decompose to NO2, whereas Ag preferentially promotes the formation of nitro-compounds (from reaction of strongly bound ad-NOx species) which can decompose to isocyanates and ammonia. The sulphation of the 1.2% Ag/γ-Al2O3 reduced the surface concentration of strongly bound ad-NOx species which were thought to react with the reductant or derived species to yield the organo-nitrogen species.  相似文献   

16.
Catalytic oxidation of naphthalene using a Pt/Al2O3 catalyst   总被引:1,自引:0,他引:1  
Polycylic aromatic hydrocarbons (PAHs) are listed as carcinogenic and mutagenic priority pollutants, belonging to the environmental endocrine disrupters. Most PAHs in the environment stem from the atmospheric deposition and diesel emission. Consequently, the elimination of PAHs in the off-gases is one of the priority and emerging challenges. Catalytic oxidation has been widely used in the destruction of organic compounds due to its high efficiency (or conversion of reactants), its economic benefits and good applicability.

This study investigates the application of the catalytic oxidation using Pt/γ-Al2O3 catalysts to decompose PAHs and taking naphthalene (the simplest and least toxic PAH) as a target compound. It studies the relationships between conversion, operating parameters and relevant factors such as treatment temperatures, catalyst sizes and space velocities. Also, a related reaction kinetic expression is proposed to provide a simplified expression of the relevant kinetic parameters.

The results indicate that the Pt/γ-Al2O3 catalyst used accelerates the reaction rate of the decomposition of naphthalene and decreases the reaction temperature. A high conversion (over 95%) can be achieved at a moderate reaction temperature of 480 K and space velocity below 35,000 h−1. Non-catalytic (thermal) oxidation achieves the same conversion at a temperature beyond 1000 K. The results also indicate that Rideal–Eley mechanism and Arrhenius equation can be reasonably applied to describe the data by using the pseudo-first-order reaction kinetic equation with activation energy of 149.97 kJ/mol and frequency factor equal to 3.26 × 1017 s−1.  相似文献   


17.
The influences of calcination temperatures and additives for 10 wt.% Cu/γ-Al2O3 catalysts on the surface properties and reactivity for NO reduction by C3H6 in the presence of excess oxygen were investigated. The results of XRD and XPS show that the 10 wt.% Cu/γ-Al2O3 catalysts calcined below 973 K possess highly dispersed surface and bulk CuO phases. The 10 wt.% Cu/γ-Al2O3 and 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalysts calcined at 1073 K possess a CuAl2O4 phase with a spinel-type structure. In addition, the 10 wt.% La–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses a bulk CuO phase. The result of NO reduction by C3H6 shows that the CuAl2O4 is a more active phase than the highly dispersed and bulk CuO phase. However, the 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses significantly lower reactivity for NO reduction than the 10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K, although these catalysts possess the same CuAl2O4 phase. The low reactivity for NO reduction for 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K is attributed to the formation of less active CuAl2O4 phase with high aggregation and preferential promotion of C3H6 combustion to COx by MnO2. The engine dynamometer test for NO reduction shows that the C3H6 is a more effective reducing agent for NO reduction than the C2H5OH. The maximum reactivity for NO reduction by C3H6 is reached when the NO/C3H6 ratio is one.  相似文献   

18.
Polychlorinated benzenes (PhClx) are formed as byproducts in the combustion of chlorobenzene on Pt supported on γ-Al2O3, SiO2, SiO2–Al2O3, or ZrO2. The congener and isomer distribution of the PhClx differs for the various supports. The amounts of PhClx correlate with the dispersion of platinum. Thus, a Pt/γ-Al2O3 catalyst calcined at 500°C to yield very small Pt crystallites was more active in PhClx formation than Pt/γ-Al2O3 calcined at 800°C. In all cases T50% for chlorobenzene conversion is close to 300°C and appears to be independent of the crystallite size of the platinum. Replacing platinum by palladium led to lower rates of combustion and to more byproducts. These results lead us to propose that, in the presence of Cl and higher oxygen concentrations, small Pt crystallites are converted more easily into Pt(IV) species. These are less efficient in combustion, but can be more active in chlorination.  相似文献   

19.
The catalytic oxidation of unsymmetrical dimethylhydrazine (UDMH) by air has been studied in a vibro-fluidized catalyst bed laboratory kinetic setup over catalysts CuxMg1−xCr2O4/γ-Al2O3, 32.9%Ir/γ-Al2O3 and β-Si3N4 in a temperature range 150–400 °C. The catalyst CuxMg1−xCr2O4/γ-Al2O3 was found to be optimal regarding high yields of CO2 and low yields of NOx. A probable mechanism of UDMH heterogeneous catalytic oxidation is proposed. Catalyst CuxMg1−xCr2O4/γ-Al2O3 has been further used in the pilot plant specially designed for the destruction of UDMH. Results of testing the main fluidized bed catalytic reactor for UDMH oxidation and the reactor for selective catalytic reduction of NOx with NH3 are presented. These results prove that the developed UDMH destruction technology is highly efficient and environmentally safe.  相似文献   

20.
A method to quantify DRIFT spectral features associated with the in situ adsorption of gases on a NOx adsorber catalyst, Pt/K/Al2O3, is described. To implement this method, the multicomponent catalyst is analysed with DRIFT and chemisorption to determine that under operating conditions the surface comprised a Pt phase, a pure γ-Al2O3 phase with associated hydroxyl groups at the surface, and an alkalized-Al2O3 phase where the surface –OH groups are replaced by –OK groups. Both DRIFTS and chemisorption experiments show that 93–97% of the potassium exists in this form. The phases have a fractional surface area of 1.1% for the 1.7 nm-sized Pt, 34% for pure Al2O3 and 65% for the alkalized-Al2O3. NO2 and CO2 chemisorption at 250 °C is implemented to determine the saturation uptake value, which is observed with DRIFTS at 250 °C. Pt/Al2O3 adsorbs 0.087 μmol CO2/m2and 2.0 μmol NO2/m2, and Pt/K/Al2O3 adsorbs 2.0 μmol CO2/m2and 6.4 μmol NO2/m2. This method can be implemented to quantitatively monitor the formation of carboxylates and nitrates on Pt/K/Al2O3 during both lean and rich periods of the NOx adsorber catalyst cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号