首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study has been conducted to assess temperature effects on mode-I and mode-II interlaminar fracture toughness of carbon fibre/polyetherimide (CF/PEI) and glass fibre/polyetherimide (GF/PEI) thermoplastic composites. Mode-I double cantilever beam (DCB) and mode-II end notched flexure (ENF) tests were carried out in a temperature range from 25 to 130°C. For both composite systems, the initiation toughness, G IC,ini and G IIC,ini, of mode-I and mode-II interlaminar fracture decreased with an increase in temperature, while the propagation toughness, G IC,prop and G IIC,prop, displayed a reverse trend. Three main mechanisms were identified to contribute to the interlaminar fracture toughness, namely matrix deformation, fibre/matrix interfacial failure and fibre bridging during the delamination process. At delamination initiation, the weakened fibre/matrix interface at elevated temperatures plays an overriding role with the delamination growth initiating at the fibre/matrix interface, rather than from a blunt crack tip introduced by the insert film, leading to low values of G IC,ini and G IIC,ini. On the other hand, during delamination propagation, enhanced matrix deformation at elevated temperatures and fibre bridging promoted by weakened fibre/matrix interface result in greater G IC,prop values. Meanwhile enhanced matrix toughness and ductility at elevated temperatures also increase the stability of mode-II crack growth.  相似文献   

2.
The purpose of this work was to determine the toughening mechanisms in interlayered quasi-isotropic glass–fibre reinforced polyester resin (GFRP) composites. Particles of polyethylene and aluminium tri-hydrate, Al(OH)3, were mixed with the polyester resin prior to laminating with woven E-glass-fibre cloth. Mode-I, mode-II, and impact tests were performed to determine critical strain energy-release rates (GIc and GIIc), absorbed energy and residual compressive strength for the laminates with and without particulate additions. Mode-I and mode-II delamination toughness were characterized using double cantilever beam (DCB) and end-notched flexure (ENF) specimens, respectively, and the delaminated surfaces of specimens were examined using scanning electron microscopy (SEM) to investigate the interlaminar morphology after fracture. The results indicate that the interlaminar toughness (GIc and GIIc), absorbed energy and residual compressive strength values of the GFRP composite increases with increase of particle content. The improved behaviour of particle containing GFRP is linked to stress-concentration induced plastic deformation and crack bridging. Polyethylene particles increase the toughness of the matrix material, which results in composites with higher values of mode-I, mode-II and impact than the composites with aluminium tri-hydrate particles. © 1998 Chapman & Hall  相似文献   

3.
Partially stiffened elastic half-plane with an edge crack   总被引:1,自引:0,他引:1  
A technique, using the Brazilian disk specimen, for measuring the fracture toughness of unidirectional fiber-reinforced composites, over the entire range of crack-tip mode mixities, was developed. The fracture toughness of a graphite/epoxy fiber-reinforced composite was measured, under both mode-I and mode-II loading conditions. We found that for certain material orientations the mode-II fracture toughness is substantially higher than the mode-I toughness. The complete dependence of the fracture toughness on the crack-tip mixity was determined for particular material orientations and the phenomenological fracture toughness curves were constructed. Using the Brazilian disk specimen, together with a hydraulic testing machine, the fracture toughness of the composite under moderate loading rates was measured. We observed that the mode-I fracture toughness was not sensitive to the loading rate at the crack tip, K, while the mode-II ‘dynamic’ fracture toughness increased approximately 50 percent over the quasi-static fracture toughness. A qualitative explanation of the dependency of fracture toughness on crack-tip loading rate is discussed. Finally, a mechanical fracture criterion, at the microscopic level, which governs the crack initiation under mixed-mode loading conditions is presented; these theoretical predictions closely follow the trend of experimental measurements. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Composites produced by resin infusion techniques will inevitably suffer from variation in resin distribution due to imprecise fibre placement and distortion of the preform during mould closure and infusion. This paper describes an investigation into the effect of variations in fibre volume fraction (FVF) on mode I and mode II delamination behaviour for 5 harness satin (5HS) woven carbon–fibre/epoxy resin composites manufactured by resin transfer moulding (RTM). Additionally, the effect of satin face tow orientation on interlaminar toughness was investigated. In mode I, it was found that toughness increased with increasing FVF and that a strong correlation between fracture surface damage and measured interlaminar fracture toughness was observed. In mode II, measured toughness values were higher than expected and tests were repeated using a mixed-mode rig with 5% mode I. It was found that fracture toughness measurements in pure mode II are significantly affected by friction or mechanical interlocking between the delamination surfaces.  相似文献   

5.
An experimental programme is presented for the effect of moisture on the toughness, mode-I and mode-II of aluminium tri-hydrate and polyethylene filled and unfilled quasi-isotropic glass–fibre reinforced epoxy–vinylester resin (GFRP) composites. Specimens were exposed in water at room temperature (20°C) for a period of 8 months and the effect of moisture content on toughness, GIc and GIIc values were obtained at an interval of every 2 months. Some samples were exposed in hot water at 40°C temperature to accelerate the uptake of moisture and produce saturated composites. The results indicate that equilibrium moisture content and diffusion coefficients increase with increase of weight of filler content in GFRP composites which is linked to an increase in microscopic cracking. Also mode-I, toughness of all composites increased with an increase in moisture uptake, mode-II toughness was relatively unaffected. Aluminium-tri-hydrate filled GFRP composites showed a higher moisture uptake, which resulted in higher values of both mode-I and mode-II, toughness than the polyethylene filled and unfilled GFRP composites. © 1998 Chapman & Hall  相似文献   

6.
A novel pre-preg coating method was used to improve the interlaminar fracture toughness in carbon fibre epoxy composite laminates, using reactive liquid rubber. The Epoxy Terminated Butadiene Nitrile (ETBN) liquid rubber incorporated between pre-pregs using automatic draw bar coating technique. Experimental test results reveal that by adding ETBN in small quantities in the range of 15.55–22.66 g/m2, inter laminar critical energy release rates (GIC and GIIC) can be improved up to 140% in mode-I loadings and 32% in mode-II loadings respectively. It was confirmed that the effect of ETBN rubber concentration in carbon epoxy pre-preg system on interlaminar fracture toughness under mode-I and mode-II loadings, was discussed by on the bases of fractographic observations and mechanism considerations using SEM.  相似文献   

7.
《Composites Part B》2003,34(6):519-526
A composite laminate based on natural flax fibre and recycled high density polyethylene was manufactured by a hand lay-up and compression moulding technique. The mechanical properties of the composite were assessed under tensile and impact loading. Changes in the stress–strain characteristics, of yield stress, tensile strength, and tensile (Young's) modulus, of ductility and toughness, all as a function of fibre content were determined experimentally. A significant enhancement of toughness of the composite can be qualitatively explained in terms of the principal deformation and failure mechanisms identified by optical microscopy and scanning electron microscopy. These mechanisms were dominated by delamination cracking, by crack bridging processes, and by extensive plastic flow of polymer-rich layers and matrix deformation around fibres. Improvements in strength and stiffness combined with high toughness can be achieved by varying the fibre volume fraction and controlling the bonding between layers of the composite.  相似文献   

8.
This paper investigates the effect of fibre lay-up and matrix toughness on mode I and mode II interlaminar fracture toughness (GIc and GIIc) of marine composites. Unidirectional and woven roving fibres were used as reinforcements. Two vinyl ester resins with different toughness were used as matrices. Results from both modes showed toughness variation that is consistent with matrix toughness. Values of GIc were not significantly influenced by fibre lay-up except at peak load points in the woven roving/brittle-matrix composite. Each peak load point, caused by interlocked bridging fibres, signified the onset of unstable crack growth. For unidirectional specimens, crack growth was stable and GIc statistically more reliable than woven roving specimens, which gave fewer GIc values due to frequent unstable crack growth. Mode II tests revealed that, except for crack initiation, GIIc was higher in woven roving composites. This was due to fibre bridging, perpendicular to the crack growth direction, which encouraged stable crack growth and increased energy absorption. Mode II R-curves were obtained for the woven roving specimens. These R-curves provide additional information useful for characterising delamination resistance. The paper concludes that composites with woven roving fibres show similar mode I delamination characteristics to the unidirectional composites; but their mode II delamination characteristics, after crack initiation, are quite different.  相似文献   

9.
A new method for calculating energy release rate (ERR) at the interface of concrete overlaid pavements is proposed using crack closure and the nodal force technique. This method transforms a 3D pavement system into a 2D interfacial crack model via a theoretical conversion. The interfacial ERRs of steel fibre-reinforced, roller-compacted, polymer-modified concrete overlay pavement subjected to vehicular load were calculated and compared with the measured interfacial fracture toughness of the bi-material. It was found that the ERRs considerably decrease with the increase in overlay thickness and elastic modulus of foundation. Thin overlays (less than 100 mm) should not be considered in overlay pavement design to avoid interfacial delamination induced by heavy vehicular loading. For a typical overlay pavement system subjected to complex vehicular loads, an interfacial crack suffers mainly from damage due to mode-I, opening, compared to mode-II, sliding, while mode-III, tearing damage is negligible.  相似文献   

10.
The fracture behavior of composite bonded joints subjected to mode-I, mode-II and mixed-mode I + II loading conditions was characterized by mechanical testing and numerical simulation. The composite adherents were bonded using two different epoxy adhesives; namely, the EA 9695 film adhesive and the mixed EA 9395-EA 9396 paste adhesive. The fracture toughness of the joints was evaluated in terms of the critical energy release rate. Mode-I tests were conducted using the double-cantilever beam specimen, mode-II tests using the end-notch flexure specimen and mixed-mode tests (three mixity ratios) using a combination of the two aforementioned specimens. The fracture behavior of the bonded joints was also simulated using the cohesive zone modeling method aiming to evaluate the method and point out its strengths and weaknesses. The simulations were performed using the explicit FE code LS-DYNA. The experimental results show a considerable scatter which is common for fracture toughness tests. The joints attained with the film adhesive have much larger fracture toughness (by 30–60%) than the joints with the paste adhesive, which exhibited a rather brittle behavior. The simulation results revealed that the cohesive zone modeling method performs well for mode-I load-cases while for mode-II and mixed-mode load-cases, modifications of the input parameters and the traction-separation law are needed in order for the method to effectively simulate the fracture behavior of the joints.  相似文献   

11.
A finite element model for predicting delamination resistance of z-pin reinforced laminates under the mode-II load condition is presented. End notched flexure specimen is simulated using a cohesive zone model. The main difference of this approach to previously published cohesive zone models is that the individual bridging force exerted by z-pin is governed by a specific traction-separation law derived from a unit-cell model of single pin failure process, which is independent of the fracture toughness of the unreinforced laminate. Therefore, two separate traction-separation laws are employed; one represents unreinforced laminate properties and the other for the enhanced delamination toughness owing to the pin bridging action. This approach can account for the so-called large scale bridging effect and avoid using concentrated pin forces in numerical models, thus removing the mesh-size dependency and permitting more accurate and reliable computational solutions.  相似文献   

12.
An experimental study has been undertaken to characterize the delamination behavior and tensile properties of interply hybrid laminated composites reinforced by interlock weft-knitted and woven glass fiber preform fabrics. The hybrid composites, comprising the alternate layers of interlock and uniweave fabrics, were compared to interlock knitted (only) and uniweave (only) composites with respect to delamination and tensile performances. Mode-I double cantilever beam and mode-II end-notched flexure tests were carried out to assess the interlaminar fracture toughness using aluminum-strip stiffened specimens. The mode-I and mode-II interlaminar fracture toughness values, G IC and G IIC, for the hybrid composite were about three and two times higher than that for the uniweave composite, respectively. The tensile strength and modulus of the hybrid composite were 315 MPa and 12.8 GPa in the wale direction, respectively, demonstrating that the strength and modulus were found to be slightly lower than those of the uniweave composite, and significantly improved in comparison with the interlock knitted composites.  相似文献   

13.
This paper presents the results of an investigation into the effects of hollow glass microsphere fillers and of the addition of short fibre reinforcements on the mechanical behaviour of epoxy binding matrix composites. Properties like flexural stiffness, compressive strength, fracture toughness and absorbed impact energy, were studied. The specimens were cut from plates produced by vacuum resin transfer moulding having a microsphere contents of up to 50% and with fibre reinforcement up to 1.2% by volume. The tests performed with unreinforced composites show that flexural and compressive stiffness, maximum compressive stresses, fracture toughness and impact absorbed energy decrease significantly with increasing filler content. However, in terms of specific values, both flexural and compressive stiffness and impact absorbed energy increase with microsphere content. The addition of glass fibre produces only a slight improvement in the flexure stiffness and fracture toughness, while increasing significantly the absorbed impact energy. In contrast, the addition of a small percentage of carbon fibres produces an important improvement in both fracture toughness and flexure stiffness, when hybrid composites with 0.9% carbon fibre are compared to unreinforced foam, but did not improved absorbed impact energy.  相似文献   

14.
In this study, the fracture behavior of a laminated composite, composed of layers of metal matrix composite having 20 vol% particulate SiC and 2014-aluminum matrix and 6061-aluminum as the ductile layers, was investigated under mixed-mode (mode-I and mode-II) loading. The results indicate that the increase in the fracture toughness of the metal matrix composite due to lamination with more ductile 6061-aluminum under pure mode-I loading condition diminishes significantly with increasing load-mixity. The interfacial behavior of the layers is shown to be the reason for this reduction in the fracture toughness values. The predicted growth directions of the cracks during the fast fracture agree reasonable well with experimental observations, in spite of the laminated microstructure of the composite.  相似文献   

15.
The work of fracture has been measured by bending tests on notched specimens of graphite and glass fibre reinforced polyester resins. Fibre bundles were used to increase the effective fibre diameter and improve the uniformity of the fibre strength.The results indicated that very tough specimens could be produced by these means (fracture surface energies of up to 11 kg/mm) and that toughness was determined by the strength, modulus and diameter of fibre bundles, as well as the volume fraction of fibre bundles. Failure occurred by fibre fracture close to the matrix fracture surface, and the fracture-surface energy appeared to result from the relative movement between fibre bundles and matrix as the fibres bridging the crack were stretched within the matrix. The work of fracture correlated well with the fibre-matrix interfacial stress, calculated from the observed stress transfer length.  相似文献   

16.
通过不同钢纤维体积分数及不同试件尺寸的预制缺口三点弯曲梁断裂试验,研究了普通乱向及定向钢纤维增强水泥基复合材料的抗起裂特性。利用试验测得的荷载-裂缝口张开位移曲线,分析了钢纤维对水泥基复合材料断裂性能的影响,并基于线性相关系数陡降法计算了起裂韧度。结果表明,定向钢纤维增强水泥基复合材料的起裂韧度明显高于普通乱向钢纤维增强水泥基复合材料;起裂韧度随钢纤维体积分数的增加而逐渐增大,当钢纤维体积分数达到0.9%左右时,定向钢纤维增强水泥基复合材料的起裂韧度值趋于稳定;在本试件高度范围内(40~100mm),起裂韧度随试件尺寸增加而逐渐增大,且定向钢纤维增强水泥基复合材料的增长趋势较为平缓。此外,从裂缝尖端夹杂改变其应力强度因子的角度解释了钢纤维的掺入及定向对起裂韧度的提高作用。  相似文献   

17.
A geometrically and physically nonlinear finite element approach is presented for the analysis of mode-I and mixed-mode free edge delamination in composite laminates which properly accounts for the effects of initial thermal and hygroscopic stresses. A constitutive model based on nonlinear fracture mechanics is used to describe delamination. An orthotropic softening plasticity model is used to determine the initiation and propagation of delamination. Although the orthotropic yield surface is based on stresses, it is proved, that, in combination with a softening type of post-failure response controlled by the fracture toughness, the approach results in a unique and physically realistic solution upon mesh refinement. The results from the nonlinear finite element computations, including predictive analysis, are compared with mode-I and mixed-mode free edge delamination experiments. This comparison shows that the numerical results are within 10% of the experimental data.  相似文献   

18.
《Composites Part B》2013,45(1):472-479
A viscoelastically prestressed polymeric matrix composite (VPPMC) is produced by subjecting polymeric fibres to tensile creep, the applied load being removed before moulding the fibres into a resin matrix. After matrix curing, the viscoelastically strained fibres impart compressive stresses to the surrounding matrix, thereby improving mechanical properties. This study investigated the mechanisms considered responsible for VPPMCs improving impact toughness by performing Charpy impact tests on unidirectional nylon 6,6 fibre–polyester resin samples over a range of span settings (24–60 mm) and fibre volume fractions (3.3–16.6%). Comparing VPPMC samples with control (unstressed) counterparts, the main findings were: (i) improved impact energy absorption (up to 40%) depends principally on shear stress-induced fibre–matrix debonding (delamination) and (ii) energy absorption improves slightly with increasing fibre volume fraction, but the relationship is statistically weak. The findings are discussed in relation to improving the impact performance of practical structures.  相似文献   

19.
To investigate enhancement of matrix-dominated properties (such as interlaminar fracture toughness) of a composite laminate, two different bead-filled epoxies were used as matrices for the bead-filled epoxy/glass fibre hybrid composites. The plane strain fracture toughness of two different bead-filled epoxies have been measured using compact tension specimens. Significant increases in toughness were observed. Based on these results the interlaminar fracture toughness and fracture behaviour of hybrid composites, fabricated using bead-filled epoxy matrices, have been investigated using double cantilever beam and end notch flexure specimens for Mode I and Mode II tests, respectively. The hybrid composites based on carbon bead-filled matrix shows an increase in both G IC initiation and G IIC values as compared to a glass fibre reinforced plastic laminate with unmodified epoxy matrix. The optimum bead volume fraction for the hybrid composite is between 15% and 20%. However, the unmodified epoxy glass-fibre composite shows a higher G IC propagation value than that of hybrid composites, due to fibre bridging, which is less pronounced in the hybrids as the presence of the beads results in a matrix-rich interply region.  相似文献   

20.
In this paper, strength of the interphase between silica and glycidoxypropyltrimethoxy silane (GPS) coupling agent has been studied using molecular dynamics (MD) simulations. Silica–GPS interphase model is created by coupling the hydroxylated silica surface with monolayer-hydroxylated GPS molecules. The interphase model is subjected to mode-I (normal), mode-II (shear) and mixed-mode (normal–shear) mechanical loading to determine the interphase cohesive traction–separation (T–S) response (i.e., cohesive traction law). In MD simulations, atomic interactions are modeled with the reactive force field ReaxFF. Effects of interphase thickness and GPS bond density on the T–S response are studied. Simulation results indicate that interphase strength decreases with increase in the interphase thickness before attaining a plateau level at higher thickness. For a particular thickness, strength improves significantly with increase in the GPS bond density with the silica surface. Damage mode is adhesive at the silica interface at lower thickness and transitions to mixed mode and cohesive failure within the silane interphase at higher thickness. Mixed-mode T–S responses are bounded by the mode-I and mode-II responses. Characteristic parameters of the continuum-level potential-based cohesive zone model (PPR–CZM) are determined by fitting the MD-based mode-I and mode-II T–S responses with PPR–CZM functional. Development of the PPR–CZM parameters enables bridging length scales from the MD to the continuum scale for fracture modeling of the fiber–matrix interphase in composites subjected to mixed-mode loading. Results on mode-I and mode-II unloading are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号