首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选用LA132、海藻酸钠、β-环糊精和PVDF四种粘合剂应用于锂硫电池正极中,采用恒流充放电、交流阻抗和扫描电镜(SEM)等方法考察了不同粘合剂对锂硫电池电化学性能的影响。其中以海藻酸钠为粘合剂的正极循环性能和倍率性能最为优异,在电流密度100 m A/g下,115次循环后放电比容量为757 m Ah/g,容量保持率达70%。在1 000m A/g电流密度下,放电比容量达到600 m Ah/g。  相似文献   

2.
张艳霞  王晨旭  王双双  谢佳 《电池》2013,43(1):41-44
使用锰酸锂(LiMn2O4)、镍钴锰酸锂(LiNi1/3 Co1/3Mn1/3O2)混合正极材料和钛酸锂(Li4 Ti5 O12)负极材料,制备了中倍率1865140型锂离子电池.制备的电池在12 min内可充满电池容量的80%以上,且电池表面温度不超过35℃;在室温下以2.00 C循环1 200次,容量保持率高于91%;在高温55℃下以1.00 C循环1 000次,容量保持率高于82%.FreedomCAR混合脉冲功率特性表明:在放电深度(DOD) 10% ~ 70%内、10s脉冲充放电状态下,电池的阻抗都在9 mΩ以下;50%DOD时的10s放电比功率为372 W/kg,充电比功率为520 W/kg.  相似文献   

3.
对磷酸铁锂(LiFePO4)正极锂离子电池的循环性能进行研究.电池以1C、100%放电深度(DOD)循环,在常温下的循环次数可达1 800次以上,而在60℃高温下只有200次左右.在高温下循环后,电池的内阻和厚度增幅大于常温时,说明高温会加速容量衰减.对高温循环失效的电池补加电解液,常温放电容量提高了约9.46%.电解液匮乏是电池高温循环性能变差的原因之一,但不是主要原因.  相似文献   

4.
锂硫电池正极活性物质理论比容量高达1 675 m Ah/g,单质硫具有环境友好,资源丰富,价格低廉等优点,因此,锂硫电池最有希望成为下一代二次电池的有力竞争者。硝酸锂是抑制锂硫电池飞梭的常用添加剂,会随着电池循环不断被消耗。不断消耗的硝酸锂难以长期抑制硫负载量较高电池的飞梭。有研究表明锂离子选择透过性聚合物电解质膜能够有效抑制飞梭效应。将聚偏氟乙烯(PVDF)和SiO_2改性并与Celgard膜复合的全氟磺酸双氰胺锂(LiPFSD)单离子聚合物电解质膜应用于锂硫电池中,研究了电解液中无硝酸锂条件下,复合膜对电池性能的影响。膜的厚度为15μm,膜内添加20%PVDF和10%SiO_2,正极硫负载量3.5 mg/cm2的锂硫电池,其首次放电比容量为995 m Ah/g,0.1 C下50次循环后放电比容量为798 m Ah/g,库仑效率维持80%以上。  相似文献   

5.
采用高导电性石墨KS6作为单质硫的载体,热处理制得高硫含量(>60%)的S/KS6复合材料,对比了平面集流体、三维集流体制备的硫电极对电池循环性能的影响.用XRD、循环伏安、交流阻抗和恒流充放电测试,对复合材料进行了分析.采用硫碳质量比2:1的S/KS6复合材料和三维集流体的锂硫电池,具有较高的容量和较好的循环稳定性,以0.05C在1.5~2.5V充放电,第30次循环的放电容量仍有首次循环的83.6%.  相似文献   

6.
用磷酸铁锂和锰酸锂复合材料作为锂离子电池的正极活性物质,与钛酸锂碳纳米管复合负极材料匹配制备了新型锂离子电池.锰酸锂提高了电池的放电电压和容量,碳纳米管提高了负极的电导率.电池循环性能良好,经100次循环后容量保持率为98.8%.  相似文献   

7.
多硫化物中间体的“穿梭效应”是抑制锂硫电池商业化应用的关键问题之一。基于此,引入一种添加剂通过锂化作用形成锂化蒽醌(Li2AQ)和可溶性多硫化物(Li2Sn)结合,形成固态有机多硫化物复合物(Li2AQ-Li2Sn聚合物),进而将多硫化物固定在正极上。该复合物极大地限制了Li2Sn的溶解,促进了硫物质的充分利用,提高了电极材料的电化学性能。使用Li2AQ后,Li-S电池在0.1 C时表现出1 316 mAh/g的大初始比容量,较不引入Li2AQ添加剂的电池有了较大提升。1 C下1 000次稳定循环,剩余比容量为421 mAh/g,具有优异的循环性能。  相似文献   

8.
通过水热法在锂硫电池正极材料硫碳复合物表面包覆纳米金属氢氧化物抑制多硫化物的穿梭,很好地改善了电池的循环性能。利用扫描电镜(SEM)、恒流充放电和交流阻抗等方法比较了不同包覆层氢氧化铝、氢氧化钴、氢氧化铈对锂硫电池性能的影响。其中,用氢氧化铝包覆的硫碳复合材料显示了较好的电化学性能,在100 m A/g充放电条件下,首次充放电比容量为1 192 m Ah/g,80次循环后放电比容量为797 m Ah/g,容量保持率达67%。0.5 C条件下,放电比容量达754 m Ah/g。  相似文献   

9.
以钛酸锂为负极、锰酸锂为正极制作了软包装锂离子电池,分析了钛酸锂/锰酸锂电池在充放电过程中产生的气体成分,研究了影响钛酸锂电池胀气的因素,如钛酸锂材料、电解质溶液酸度、电解质溶液添加剂等。进一步开发出性能优越的35 Ah软包装钛酸锂/锰酸锂电池,该电池常温1 C循环3 000次后容量保持87%,高温55℃、1 C、1 300次循环后仍能保持85%的初始容量,并具有良好的倍率性能和搁置性能。  相似文献   

10.
采用原位与非原位相结合的方法,将锂硫软包电池循环失效的容量损失进行定量化分析,主要包括可逆容量损失和不可逆容量损失。根据表征实验拆分,可逆容量损失主要由电流极化、电解液缺失和电芯极片膨胀导致的容量损失组成,不可逆容量损失主要由负极沉积硫化锂、隔膜黏附多硫化锂和电解液溶解等容量损失组成。通过计算对比,造成锂硫软包电池循环失效的主要因素为锂金属负极的粉化和硫化锂的沉积(约占47%),其次为隔膜黏附多硫化物约25%。可针对造成循环失效的主要因素进行重点改善,提升锂硫电池的循环性能,推动实用化进程。  相似文献   

11.
圆柱磷酸铁锂32650-4Ah电池有着优异的循环性能和倍率性能,但低温-40℃放电容量只有常温的40%;采用小粒径磷酸铁锂,复合石墨负极和低温电解液制作锂离子圆柱动力电池,低温性能有较大的改善,电池在-40℃下0.5 C放电容量能够达到常温0.5 C放电容量的75%以上,但循环性能却大大降低,1 C常温循环1 000次后,容量保持率约为80%。  相似文献   

12.
《电池》2015,(3)
以椰壳为原料、氢氧化钾为活化剂,制备高比表面积(2 258 m2/g)、具有微孔结构的活性炭。采用氨水、双氧水进行改性,随后经高温封装法将改性活性炭与硫复合(硫含量为60%),作为正极材料制备锂硫电池,研究官能团改性对锂硫电池性能的影响。氨水改性引入了大量的氨基,以200 m A/g的电流在1.7~2.8 V循环,首次放电比容量由硫正极的1 058m Ah/g提高至硫碳复合正极的1 333 m Ah/g;双氧水改性引入了羧基基团,对锂硫电池的容量和循环性能不利。  相似文献   

13.
刘云霞 《电源技术》2016,(6):1194-1195
采用聚乙二醇二甲醚(PEGDME)、聚乙烯吡咯烷酮(PVP)、聚氧化乙烯(PEO)作为聚合物电解液添加剂,通过充放电测试研究了这些添加剂对锂硫电池电化学性能的影响。研究结果表明,添加2%(质量分数)电解液添加剂PVP能有效提高锂硫电池的循环性能和库仑效率,在电流密度为200 m A/g下,前50次的电池放电容量保持率由42.8%提高到50.8%,首次循环库仑效率由60.2%提高到95.3%。  相似文献   

14.
以聚乙二醇(PEG)400和水为共溶剂,抗坏血酸(VC)为还原剂,经溶剂热法制备磷酸铁锂,并将其应用于锂离子电池正极材料.采用X射线衍射光谱(XRD)、扫描电子显微镜(SEM)和热重(TG-DTG)对其结构、形貌和性质进行表征.在PEG和VC的共同作用下,所制备的纯相磷酸铁锂在0.1 C下首次放电比容量最高可达143.2 mAh/g,循环20次后容量保持率为74.4%.VC的加入可防止二价铁的氧化,VC含量的变化对磷酸铁锂的晶型和放电容量也具有重要影响.高温热处理可使残留在磷酸铁锂表面的PEG原位生成碳,避免了由传统球磨掺碳过程造成的结构缺陷和碳包覆层不均匀,使材料的充放电可逆容量和循环性能进一步提高.循环30次后容量保持率为97%,库仑效率100%.  相似文献   

15.
为了提高锂硫电池的高倍率放电性能,采用了多孔的泡沫镍作集流体。通过循环伏安测试可知,泡沫镍作集流体时泡沫镍在充放电过程中并没有参与反应,而是相对于铝箔集流体降低了电池的氧化峰电势和提高了还原峰电势。充放电测试可知:泡沫镍作集流体时,锂硫电池表现出良好的高倍率放电性能,在1 C充放电下,以泡沫镍为集流体的锂硫电池首次放电比容量达到940 m Ah/g,经过100次循环后其放电比容量保持在508 m Ah/g左右。  相似文献   

16.
李福桥  朱泽华 《电源技术》2016,(5):1142-1144
以金属锂为负极,硫为正极的锂硫二次电池的能量密度高达2 600 Wh/kg,仅次于锂-空气二次电池,成为电动汽车及电站储能电池的研究热点。由于液态电解质溶解大量的放电产物聚硫化锂等因素,导致锂硫电池的容量衰减快、循环寿命短及自放电率大,这也是目前锂硫电池难以商业化的主要问题。围绕硫多孔碳复合材料、电解液添加剂及离子交换隔膜等,综述国内外最新研究进展,以期得到研究思路。  相似文献   

17.
以扣式电池评估了碳包覆钛酸锂的比容量。采用磷酸铁锂为正极,碳包覆钛酸锂(LI4Ti5O12)粉末作为负极活性材料制作锂离子软包电池,并对电池进行测试。该电池2C放电容量能够达到0.5C放电容量的81.6%。1C2000次循环后,容量保持率在90%以上,展现了优异的循环性能。电池以3C倍率过充到15V,没有漏液、爆炸和起火,经过针刺测试后,没有爆炸和起火,电池表面最高温度不超过90℃。  相似文献   

18.
采用多壁碳纳米管(MWCNT)、气相生长碳纤维(VGCF)、活性炭(AC)为单质硫的载体,通过高温热处理的方法制备锂硫电池用S/C正极材料。通过对所得材料进行X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、热重分析、恒流充放电及循环伏安测试等对材料的结构及电气性能进行分析。研究发现,锂硫电池的放电比容量及循环性能受碳材料的影响较大,其中S/VGCF复合材料的电化学性能较好,当以0.1 C的电流在1.5~3.0 V进行充放电时,其首次和第100次循环的放电比容量分别为1 205.62、613.18 m Ah/g。  相似文献   

19.
段锐  郑刚  钟明明  鲁劲华 《电池》2021,51(5):490-493
通过分析浸润、极化和材料活化等影响因素,研究磷酸铁锂(LiFePO4)锂离子电池常温循环容量抬升异常问题.改善电解液浸润将电池循环容量抬升从7.57%降低至6.02%,仍是异常高抬升,证明浸润影响不是主因;原位电化学阻抗谱(EIS)结果表明,扩散阻抗(W0)对循环容量抬升影响较大,电池在2.00~3.65 V充放电,1.00 C循环60次后,W0从116.16 mΩ减小至96.66 mΩ,循环容量抬升5.96%;而0.20 C循环无容量抬升,W0亦无降低趋势.电极材料活化是造成循环容量抬升的关键,若材料活化充分、容量发挥正常,抬升比可控制在2%以内.  相似文献   

20.
郭建强  李晶  黄叶菊  彭汝芳 《电池》2016,(3):133-136
分别以气相生长碳纤维(VGCF)、多壁碳纳米管(MWCNT)和活性炭(AC)作为单质硫载体,通过高温热处理制备锂硫电池用S/C正极材料。采用SEM、XRD、热重分析(TG)、循环伏安、电化学阻抗谱(EIS)和恒流充放电等方法,分析复合材料的结构及电化学性能。碳材料形态对锂硫电池的放电比容量和循环性能有重要影响,S/VGCF复合材料的电化学性能较好。以0.1 C的电流在1.5~3.0 V充放电,首次和第100次循环的放电比容量分别为1 204.87 m Ah/g、547.62 m Ah/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号