首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 734 毫秒
1.
大理岩卸荷条件下弹黏塑性本构关系研究   总被引:4,自引:1,他引:3  
 利用TLW–2000型岩石三轴蠕变试验机对锦屏大理岩进行恒轴压分级卸围压应力路径下的三轴流变试验,得到轴压恒定、不同围压下的应力–应变–时间曲线。根据卸荷应力路径下锦屏大理岩的流变变形特点,以Cristescu本构模型为基础,通过试验结果确定模型参数,并在模型参数的确定过程中考虑卸荷应力路径的影响。所建模型克服了三维元件组合模型不能考虑应力路径影响以及不能很好反映侧向流变变形规律的缺点。最后,用该模型对流变试验数据进行拟合,结果表明:该模型可以很好地描述卸荷应力路径下大理岩的整体变形随时间的变化规律。  相似文献   

2.
锦屏绿片岩分级卸荷流变规律研究   总被引:2,自引:0,他引:2  
利用TLW-2000岩石三轴蠕变试验机对锦屏二级水电站辅助洞的绿片岩进行恒定轴压分级卸围压应力路径下的三轴蠕变试验。本文介绍了整个试验过程,描述和分析了绿片岩轴向与侧向蠕变规律。分析了绿片岩各向受力条件对其轴向和侧向流变特性的影响。结果表明:锦屏绿片岩在平行片理方向和垂直片理方向有较大差异性,在以偏应力为主导因素的外力作用下,侧向表现出比轴向更为突出的流变特性。针对工程实际,利用一维Burgers模型求取绿片岩平行片理方向的流变参数。利用Burgers模型得到的曲线与试样在侧向流变数据可较好拟合,该模型适合描述绿片岩在平行片理方向上的弹—黏弹性流变特征,研究得到的三轴蠕变参数也可为锦屏二级水电站提供参考值。  相似文献   

3.
周期荷载作用下红砂岩三轴疲劳变形特性试验研究   总被引:11,自引:11,他引:11  
为了解三向应力状态下周期荷载作用时红砂岩的疲劳变形特性,利用RMT-150B岩石力学多功能试验机,对红砂岩试什进行不同围压时静态应力-应变全过程试验和疲劳试验。试验结果表明:三轴周划荷载作用下红砂岩疲劳破坏时的变形量与应力上限(б1-б3)水平线任相应围压下的静态应力-应变全过程曲线峰后犀对应的变形量相当;轴向小可逆变形发展呈现三阶段规律;三轴周期荷载的上限应力和幅值对疲劳破坏特性有显著影响。  相似文献   

4.
应变加载速率对盐岩力学性能的影响   总被引:7,自引:5,他引:2  
 对盐岩进行不同围压下变应变加载速率的三轴压缩强度与变形特性的室内测试,分析应变加载速率对盐岩三轴强度、轴向应变及侧向应变以及破裂形式等物理力学性质的影响。在所测试的应变加载速率范围内,加载速率对盐岩三轴强度的影响可分为3个阶段:无明显影响的弹性阶段、强度差异形成的塑性阶段初期、强度差异保持的应变硬化阶段,最终的结果是抗压强度随着加载速率的提高而增大。对试验后岩样的破坏形式进行细观分析可知,高应变加载速率对盐岩内部结构造成的破坏更明显,裂纹长度大且外观明显,与低应变率下的裂纹破裂形式有显著的差异。对三轴试验后的岩样进行单轴压缩测试,发现三轴试验时的应变率较大,试验后岩样的弹性模量越小,表明高应变率导致盐岩的结构破坏更严重,对盐岩的内部损伤越大。对比不同围压下的试验数据并结合其他单轴试验下的研究结果,得出围压是加载速率对盐岩性质有无影响的先决条件,并且围压越高加载速率对盐岩力学性质的影响越明显的结论。以本次试验研究所得成果出发,结合实际工程中盐岩溶腔的各种用途以及建造、运营的各个阶段内不同的盐岩应变率进行分析,提出对工程有益的建议。  相似文献   

5.
为了揭示深部软弱地层开挖卸荷后围岩流变力学特性,开展砂质泥岩恒轴压逐级卸围压三轴卸荷蠕变试验,研究软岩轴向、侧向和体积蠕变规律和卸荷流变过程中偏应力–应变关系特性。主要结论有:(1)每卸除一级应力(10 MPa)产生的瞬时变形、蠕变变形、蠕变变形相对该级荷载下的瞬时变形的比值、蠕变变形占总变形量百分比均随偏应力的增加而增大,围压越低蠕变变形增加的幅度越大;(2)随着围压逐级卸荷,岩石内部产生竖向张性微裂纹,微裂纹的萌生和扩展使得卸围压瞬时产生较明显的侧向变形,且蠕变过程中微裂纹将发生与应力水平相应的时效扩展,产生黏塑性变形;(3)岩石在时效条件下的渐进破坏的本质是损伤随时间的逐渐累积,并伴随着裂纹的时效扩展,统称为时效损伤破裂;(4)随着围压逐级卸荷,偏应力增大,历史上经历的卸荷级数多、蠕变时间长,试样内部积累的不可恢复应变和损伤越多,时效损伤破裂越剧烈,在该级荷载条件下轴压低的试样其流变速率越大,蠕变变形量越大,卸荷效应和流变特征更加明显,同时伴随显著的侧向扩容,导致蠕变扩容;(5)卸荷和蠕变所产生的损伤和塑性变形对后续力学行为影响非常显著。  相似文献   

6.
厦门海底隧道是我国建设的第一条海底公路隧道,其穿越的F1、F2、F3、F4四条断层破碎带处,洞体围岩软弱、破碎,流变属性十分明显.对该类岩石进行了室内三轴压缩流变试验,研究了岩石在不同围压和不同应力水平作用下轴向应变随时间的变化规律.试验结果表明,幂律型蠕变模型可以用来较好的模拟该类岩石除第三阶段蠕变以外的蠕变行为.  相似文献   

7.
 岩石在周期荷载作用下的力学性能是影响岩体工程长期稳定性的重要因素之一,需研究循环荷载作用下岩石的特性及演化规律。首先采用声波纵、横波波速测量方法,对岩样进行筛选。设计灰岩在施加不同围压和恒定循环上限应力作用下,三轴变围压循环加卸载下岩石变形特征测试方案。三轴变围压循环试验在GCTS–1000型岩石力学测试系统上进行,通过对试验结果的分析表明:(1) 灰岩在变、恒围压加、卸载循环中,形成一封闭的塑性滞回环。在轴向变形上滞回环面积逐次缩小;而变围压循环在径向变形上滞回环面积逐次增大,而恒围压循环在径向变形上滞回环面积几乎相等。(2) 在三轴变围压循环压缩试验中,围压增加和循环上限应力不变,残余变形量随着循环次数的增加而呈现出一个递减的趋势,轴向应变和径向应变的发展趋势是相反的。(3) 在整个循环加卸载过程中,各个加卸载阶段变形模量值不同,卸载阶段变形模量高于加载阶段变形模量。(4) 变围压循环加、卸载阶段变形模量的值大于恒围压循环加、卸载阶段下变形模量的值。通过试验,揭示灰岩在三轴变围压循环下,加载和卸载2种力学状态时变形特性的差异。同时分析变围压循环和恒围压循环状态下岩石弹性参数的差异性。  相似文献   

8.
岩石较少有直接拉伸破坏,在巷道和采场顶板中,弯曲变形是重要的变形模式。采用一次加载和分级加载两种加载方式对岩梁的弯曲流变破坏进行了试验研究,对岩梁的弯曲流变特性进行了分析,重点分析了流变条件下岩梁弯曲中性面位置的变化规律。结果表明:岩梁的顶底两侧均存在流变,虽然其大致规律相似,但存在明显的差异。岩梁底面为高应力区的拉伸流变,顶面为低应力区的压密阶段的流变。岩梁的弯曲中性面位置在流变过程中随时间而变化,并最终趋于稳定,但在不同的加载方式中性面的稳定位置差别较大。对弯曲流变与单轴压缩流变进行的比较表明,岩石单轴压缩流变的横向极限拉应变和弯曲拉伸流变的极限拉应变基本一致。  相似文献   

9.
 以锦屏二级水电站引水隧洞绿砂岩为研究对象,采用恒轴压、逐级卸围压的应力路径开展室内流变试验,研究卸荷条件下的轴向及侧向变形特征。成果表明:侧向塑性变形的发展速率明显比轴向快,岩样破坏前在侧向反应要比轴向更为明显。在对流变试验数据进行深入分析基础上,从材料损伤的角度出发,认为岩石流变力学参数随着黏性应变的负指数形式逐步弱化,从而建立起岩石损伤演化方程及变参数非线性Burgers模型。基于Levenberg-Marquardt(LM) 算法,以残差平方和为目标函数,对试验数据开展相应拟合,所获得的参数可较好反映蠕变曲线的非线性特征。经比较,计算曲线与试验点曲线比较接近,说明该流变本构模型能较好的反映出锦屏绿砂岩在卸荷条件下的衰减蠕变阶段和稳定流变特性。  相似文献   

10.
分级卸荷条件下锦屏大理岩流变规律研究   总被引:8,自引:4,他引:4  
 结合锦屏水电站引水隧洞的工程实际,采用恒轴压分级卸围压的应力路径对锦屏大理岩开展了室内三轴压缩蠕变试验。首先,详细介绍卸围压蠕变试验的过程,并针对轴向和侧向蠕变规律的差异进行对比分析。然后,研究卸荷应力路径下应力状态与岩石蠕变变形的关系,研究结果表明,应力差是决定试样蠕变量的主要因素。最后,以Burgurs模型作为理论模型,在综合考虑试样整体变形的情况下,采用相关试验结果直接确定三维本构方程的模型参数。通过对锦屏大理岩轴向和侧向蠕变变形规律的对比分析,认为2个方向的蠕变变形规律存在明显差异,仅根据轴向蠕变变形规律确定的三维流变本构不能反映侧向的蠕变变形规律。因此,建议在建立三维本构时,必须考虑试样的整体变形特性。  相似文献   

11.
坝基硬岩蠕变特性试验及其蠕变全过程中的渗流规律   总被引:1,自引:1,他引:0  
 采用先进的岩石全自动流变伺服仪,对坝基坚硬岩石变质火山角砾岩进行渗透水压力作用下的三轴流变力学试验。基于试验结果,研究变质火山角砾岩在不同围压下的蠕变特性,并分析岩石蠕变全过程中渗流速率随时间的变化规律。研究结果表明,当所施加应力水平小于岩石破裂应力水平时,变质火山角砾岩轴向蠕变变形不明显,且主要表现为稳态蠕变;当施加应力水平大于或小于但接近岩石破裂应力水平时,出现明显蠕变变形,蠕变速率开始增加,且发生加速蠕变破裂,表现出较为明显的加速蠕变特性。变质火山角砾岩环向蠕变变形量明显大于轴向蠕变变形量,表现出明显体积扩容现象。变质火山角砾岩稳态蠕变阶段的渗流速率随时间变化不大,但加速蠕变阶段的渗流速率明显增大,围压2 MPa下变质火山角砾岩的渗流加速度大于围压6 MPa下的渗流加速度。试验结果旨在为岩石流变本构模型及参数辨识提供可靠的试验依据。  相似文献   

12.
软硬互层岩体卸荷蠕变力学特性试验研究   总被引:1,自引:0,他引:1  
 利用岩石全自动三轴蠕变仪对锦屏二级水电站辅助交通洞典型灰白色细晶大理岩与绿片岩软硬互层岩样开展卸荷蠕变试验,得到岩样轴向、侧向典型的蠕变全程曲线。蠕变试验结果表明:围压较高时,试样的轴向与侧向变形随时间的推移变化不大,蠕变现象不明显;随着围压逐渐减小,试样的蠕变变形越来越显著,在最后一级出现了典型的蠕变3个阶段并发生了非线性加速蠕变现象直至试样破坏。软硬互层岩样三轴卸荷蠕变破裂形式主要以剪切破坏为主,局部伴随着一定程度的张拉破坏,主裂纹与水平面大致呈45°角,剪切破裂面较为单一平整,且破坏面基本是沿着强度较低的绿片岩层理内部并平行于层理面产生和扩展贯通而形成的。在加速蠕变阶段之前,其侧向蠕变变形比轴向蠕变变形小,但试样处于加速蠕变阶段时,侧向蠕变变形量与蠕变速率均要高于轴向蠕变;这表明随着时间的增长和围压的降低,岩样的侧向蠕变比轴向蠕变更为灵敏,而且体积扩容效应显著。卸荷条件下,蠕变力学参数表现出较为显著的非定常性规律,当外荷载小于岩样长期强度时,岩石卸荷蠕变力学参数与卸荷量有关,随着卸荷量的增大逐渐弱化;当外荷载大于岩样长期强度时,岩石卸荷蠕变力学参数不仅与卸荷量有关,而且还与蠕变时间有关。  相似文献   

13.
 为研究三向应力状态下循环荷载作用对盐岩变形、强度及损伤特性的影响,利用TAW–2000 型微机伺服岩石三轴试验机进行不同荷载波形参数(上、下限应力、应力幅值和频率)和不同围压下的盐岩试样的循环加、卸载试验。试验得到盐岩轴向初始变形和稳态变形两阶段演化规律;通过提高循环荷载上限应力、降低下限应力、增大应力幅值或者降低载荷频率、减小围压等途径,均会加速盐岩试样不可逆变形的发展,提高盐岩循环稳态应变速率,减小稳态阶段在整个变形阶段的比例,从而加速试样变形破坏;荷载波形参数中上限应力和应力幅值对循环荷载作用下盐岩变形演化速率、试样损伤发展的影响最大。循环荷载作用下,盐岩弹性模量随循环次数或加载时间呈指数递减趋势,并在50~100个循环后其值接近常数;循环加载后二次压缩盐岩强化与否,取决于循环加载时所施加荷载水平是否造成盐岩内部损伤的累积,通过试验可间接推断盐岩三轴循环变形破坏的上限应力阈值为80%~89%。  相似文献   

14.
双联动软岩渗流–应力耦合流变仪的研制   总被引:2,自引:2,他引:0  
 为研究软岩的长期力学特性,研制双联动软岩渗流–应力耦合三轴流变仪。该仪器特别适用于软岩、硬土在不同应力条件下的流变特性。仪器采用先进的伺服控制、滚珠丝杠和液压等技术组合,能自动稳压、自动记录应力–位移曲线、温度历时曲线。设备除了能够实现普通三轴试验机的功能,由于其独特的设计形式,还可以同时对2个试样实现相同轴压、不同围压、相同水压的力学试验;可以进行围压控制、孔隙水压力控制,同时可以测量孔隙水压力等等。使用情况表明,该试验装置结构简单,稳定性好,精度高,是一套功能齐全、使用方便的试验装置。  相似文献   

15.
岩石剪切裂隙渗流特性试验与理论研究   总被引:3,自引:3,他引:0  
 通过在三轴应力条件下对丹江口库区辉绿岩进行剪切破坏得到剪切裂隙,然后对剪切裂隙进行不同围压和裂隙水压力(渗透压差)作用下渗透性能的试验研究。研究结果表明:绝大部分岩样在剪切破坏后会形成单条贯穿剪切裂隙,这种剪切裂隙的渗透系数与净围压的关系符合指数函数特征,且受环向应变影响很大,但受轴向应变影响较小;裂隙水压力对裂隙渗透系数影响明显,在相同净围压下,裂隙水压力越大,渗透系数越大,其主要原因是较大的裂隙水压力使裂隙两侧基岩产生附加变形,导致隙宽增加。基于试验数据和理论分析,根据三维应力下的裂隙–岩块位移模型推导考虑裂隙水压力的渗透系数计算公式,该公式可以较好地描述不同围压和裂隙水压力下实测渗透系数的变化趋势,并且公式中的参数均可根据简单的三轴压缩试验得到,计算结果与实测数据符合较好。  相似文献   

16.
 高应力条件下,岩石卸荷的力学响应特征及发生机制是高地应力地区岩体工程开挖稳定性评价及控制的关键问题。基于不同卸荷速率和初始围压条件下三轴高应力大理岩卸围压试验,结合分形理论和能量原理,研究高应力卸荷条件下岩石破裂块度分布规律及其与能量耗散和释放的相关性。高应力条件下三轴卸围压大理岩试样碎块分形性质具有较强的局部性,仅在小于某一特征尺度(分形特征尺寸阈值)范围内表现出较好的分形性质,其碎块分维数均大于2,分维数随卸荷速率增大而单调减小,但初始围压对分维数的影响与卸荷速率密切相关。相对常规三轴压缩岩样,高围压下卸荷岩样虽然峰值点附近耗散和储存应变相对少得多,但其峰值前、后应变能转化速率相对大得多,特别是峰后的弹性应变能释放速率和环向膨胀消耗应变能速率。高应力卸荷条件下卸荷速率越快、初始围压越高,峰前损伤和峰后破裂贯通历时越短,峰值点处耗散应变能和储存弹性应变能越大,峰前、峰后应变能转化速率越快,破碎岩样的分形特征尺寸阈值越大,分维数越小,张性破裂程度和性质越强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号