首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为实现水下无人机在水域中自主作业的功能,对其设计一套合理的路径规划方案是非常有必要的。蚁群算法针对水下无人机路径规划方面有着非常好的效果,拥有不错的鲁棒性,但是传统的蚁群算法在解决路径规划问题时很容易出现局部最优解的问题。以传统蚁群遗传算法理论为根据,对其进行添加目标引导素、构建精英蚂蚁体系、更新信息素浓度这三方面的改进,使用栅格法构建水下环境分析模型,并以最短的路径为目的,规划一条从初始状态到目标状态的无碰安全途径,运用仿真的办法展开验证。结果显示:相较于传统算法,改进后的算法在求解速度和全局求解能力上有较大的优势。  相似文献   

2.
基于改进多目标蚁群算法的无人机路径规划   总被引:3,自引:0,他引:3  
针对无人机SEAD任务的路径规划问题,利用VORONOI图构建初始路径,分析了路径代价计算方法,并使用改进的多目标蚁群算法对路径进行优化选择。针对该特殊应用场景,引入了各路径段与起始点—目标点连线的夹角信息作为新的启发信息,加快了算法的搜索速度,同时改进启发信息的计算公式,适当缩小各可选路径段启发信息量的差异,加强了蚁群算法的全局搜索能力。仿真结果显示,与基本多目标蚁群算法相比,改进后的算法有效提高了路径搜索的效率和质量。  相似文献   

3.
基于改进遗传蚁群算法的无人机航路规划   总被引:3,自引:0,他引:3  
研究无人机航路,要在有限的时间内规划出最优路径.因此航路规划问题本质是多约束条件下函数求极值的优化问题,为了避免局部最优、减少计算时间是目前航路规划的关键技术.针对常用的规划算法存在收敛速度慢且易陷入局部最优这-问题,提出了一种改进的遗传蚁群算法.遗传算法阶段给出了一种小变异和引入新种群算子,维持了较优种群的多样性,蚁...  相似文献   

4.
为了提高蚁群算法对于无人机的路径规划,提出了一种改进的蚁群算法,利用栅格地图法,改变蚁群算法的转移概率,加入死区判断,可以有效的减少"无效蚂蚁".并对更新信息素进行改进,增强每一代蚂蚁的最优路径的信息素,其他保持不变.同时舍去每一代蚂蚁的最长路径,用历史最短路径代替.此外,为避免在蚁群算法中陷于局部最优,再通过蚂蚁行走...  相似文献   

5.
蚁群算法在最优路径规划中的应用   总被引:3,自引:0,他引:3       下载免费PDF全文
最优路径规划是道路交通导航系统中很重要的一个功能。将路径规划问题转化为以加权路径网的以路径长度与通行时间的线性组合为目标函数的优化问题,并提出一种改进的蚁群算法应用于该问题,使规划的路径更加符合各种要求。仿真结果表明,该算法能在较短时间内根据不同需求规划出较优的路径,是行之有效的方法。  相似文献   

6.
交通资源规划是一种比较典型的组合优化问题,新型的仿生算法--蚁群算法,由于具有正反馈性、鲁棒性、并行计算、协同性等特点,非常适合于解决交通资源规划问题.针对出租车路径规划问题的特点以及蚁群算法在这方面应用的一些不足,提出了一种改进的蚁群算法.根据同一蚁群的信息素相互激励,不同蚁群之间信息素相互抑制的原理,该算法实现了出租车资源的合理分布.  相似文献   

7.
针对受灾山区运输物资的三维无人机路径规划问题,提出了一种精英扩散蚁群优化算法EDACO,首先通过极值限定策略限定了信息素浓度的范围,防止算法前期陷入局部最优;然后采用精英策略改进信息素浓度更新公式,加强优质个体对种群的影响力; 再引入信息素扩散策略,加强距离较近个体间的交流协作,以防止蚂蚁个体间联系不紧密造成的算法停滞。最后,将精英扩散蚁群优化算法、传统蚁群算法、遗传算法和萤火虫算法运用于4个山区受灾无人机运输实例中,结果表明了EDACO的优越性和有效性,且该算法对无人机三维路径规划问题有着良好的适应性。  相似文献   

8.
基于优化蚁群算法的机器人路径规划   总被引:8,自引:1,他引:8       下载免费PDF全文
研究机器人导航中的路径规划问题,运用栅格法和图论思想建立环境模型,在该模型中通过蚁群算法进行路径寻优,提出用遗传算法的思想改进已有蚁群算法,即GAA算法。仿真实验结果表明,该算法能有效地提高机器人的路径搜索速度及路径优化、路径平滑等方面的指标。  相似文献   

9.
马艳  包啟立 《福建电脑》2009,25(11):76-76,86
研究了机器人在静态障碍物环境下的路径规则问题,根据问题模型的特性设计了一种蚁群优化求解算法。该算法利用前一轮选择的路径对可行解的信息素进行相应的调整,再按转移概率选择路径,经过多次迭代搜索得出最短路径.已达到对机器人的路径优化。  相似文献   

10.
基于改进蚁群算法的机器人路径规划算法   总被引:6,自引:0,他引:6  
针对传统蚁群算法搜索时间长、容易陷入局部最优解等缺点,提出了一种基于组合优化和起始目标导引函数的改进型蚁群算法.为备选结点引入优先级,采用状态转移概率和优先级的组合优化方法平衡各路径信息,避免陷入局部最优.搜索过程引入起始目标导引函数.优先搜索距起点远而距目标点近的结点.仿真结果表明,所提出的改进蚁群算法能够在较短时间内找到全局最优路径,显著提高移动式机器人的路径规划性能.  相似文献   

11.
基于蚁群粒子群融合的机器人路径规划算法   总被引:2,自引:0,他引:2  
针对复杂环境下中移动机器人路径规划问题,提出了一种基于蚁群粒子群融合的路径规划算法。该算法首先利用粒子群路径规划的环境建模方法快速规划出起始点到目标点的初始路径。然后根据产生的路径进行信息素的分配,最后经改进的蚁群算法进行进一步寻优,从而找出最优路径。经仿真证明,该方法在寻得最优路径的基础上可大大降低寻优的时间,尤其是对于复杂环境下的路径规划,其效果尤为明显。  相似文献   

12.
在模拟仿真出无人机三维飞行环境的基础上,根据航迹规划的要求,建立对应数学模型,并采用蚁群算法进行优化仿真.针对基本蚁群算法存在的搜索时间长、容易陷入局部最优解等缺点,将蚂蚁当前位置与目标位置的距离信息反馈到系统中作为航迹规划的控制信息,同时对航迹节点的选择方法进行改进,以提高算法的效率.仿真实例结果表明,该算法可以规划出满足无人机飞行要求的航迹.  相似文献   

13.
提出了基于改进蚁群算法的直升机航迹规划仿真过程,直升机在执行任务的过程中,有效地利用地形以躲避雷达扫描是直升机提高其生存能力的关键手段。利用真实地形的DEM数字高程建立真实地形;根据目标与雷达的交会几何关系,推算出雷达在真实地形中扫描的盲区;并针对传统的蚁群算法缺点,提出一种改进的蚁群算法仿真飞机飞行通过雷达区域,为其选择一条安全的飞行路线,使直升机从起始点到目的点的路径最优,从而达到提高战斗效率的目的。  相似文献   

14.
用栅格模型表示工作环境,确定机器人运动起始结点和目标结点后,对工作环境进行分析,选取起始点与目标点之间连线附近的若干栅格,以被选取栅格为关键点,采用蚁群算法分别计算关键点与起始点和目标节点之间的最短路径,求取全局最短路径。仿真验证,该方法简单有效。  相似文献   

15.
针对机器人路径规划问题,提出一种改进的蚁群算法.建立栅格地图模型,结合蚁群算法,设置禁忌表,同时针对死锁问题,提出丢弃陷入死锁的蚂蚁;当蚂蚁迭代次数大于60代后,通过减小信息素增强系数Q,达到提高算法收敛速度的目的.实验结果表明,改进后的算法能快速规划出最优路径,同时能避免陷入死锁和局部优化.  相似文献   

16.
针对传统无人机航迹规划算法应用在突发威胁场景下存在搜索点冗余、路径规划实时性较差等问题,提出了一种基于多因素Dubins路径的无人机动态航迹规划算法。该算法首先根据无人机自身性能约束及突发威胁区域的位置,并且考虑无人机的起始和最终位置,利用传统的Dubins路径找到有效的路径扩展点。然后结合启发式搜索思想建立基于路径长度和威胁的路径扩展点评估函数。最后通过路径评估函数计算,比较路径点的代价值,选取每一步的路径扩展点,规划出较优路径。仿真结果表明,在突发威胁场景下利用该算法进行航迹规划时路径长度较短、路径扩展点较少,并且符合无人机实际飞行过程中航向角变化,可有效保障无人机的安全性和航迹规划的实时性。  相似文献   

17.
提出了一种复杂静态环境下的移动机器人避碰路径规划的改进蚁群算法,基于栅格法的工作空间模型,模拟蚂蚁的觅食行为;针对路径规划的需要,搜索过程采用了蚂蚁回退策略、目标吸引策略、参数自适应调整和路径优化策略;利用蚂蚁回退策略和惩罚函数使得蚂蚁能够顺利跳出陷阱,并且在下一次搜索中不再选择此路径,从而避免了遇到陷阱时形成的路径死锁情况,同时也提高了最优路径的搜索效率;仿真试验结果表明,该算法能迅速规划出最优路径。  相似文献   

18.
一种改进的机器人路径规划蚁群算法   总被引:4,自引:0,他引:4  
描述了一种静态环境下机器人路径规划的改进蚁群算法.该算法使用栅格法对机器人的工作空间进行建模.通过模拟蚂蚁的觅食行为,使蚂蚁在起始点和目标点之间采用折返的方式完成最优路径的搜索,增强了蚂蚁搜索的多样性;搜索过程采用“惯性原则”和最大信息素搜索策略,使蚂蚁对最优路径更为敏感;同时,根据信息素在栅格模型中散播的特点,提出一种新的信息素更新策略和散播方式,加快解的收敛速度.仿真结果验证了该算法的有效性,即使在障碍物复杂的地理环境,用本算法也能迅速规划出最优路径.  相似文献   

19.
危险天气下的改航与受限区划设和路径规划算法密切相关, 本文针对改航环境构建中Graham扫描结果存在较大无效区域, 提出分块后并行扫描. 针对危险天气的突发性, 为了适用于复杂环境, 提出在增量式的D*Lite全局规划路径基础上智能分割、蚁群算法局部搜索的复合结构动态规划方法. 通过改进信息素更新策略解决收敛速度慢、耗时长且易陷入局部最优的缺点. 实验结果表明, 分块并行Graham扫描划设的飞行受限区形状更接近实际, 面积缩至原先的48.1%. 改进蚁群融合D*Lite的复合结构动态路径规划算法D*Lite-ACO兼顾全局与局部, 将重规划范围控制到当前位置与目标点间, 在路径长度、规划时间和迭代范围上的评价指标分别提升1.2%、40.7%、66.7%.  相似文献   

20.
移动机器人合理的路径规划是进行探索任务的前提,针对移动机器人路径规划的复杂性,把蚁群算法引入到机器人路径规划中;普通的蚁群算法存在收敛速度慢、效率低和容易陷入局部最优等缺陷,难以直接应用于机器人路径规划中;提出一种在蚁群算法中改进信息素的更新方式、引入最大最小蚁群系统以及改进状态转移规则的移动机器人路径规划方法,在栅格环境下对移动机器人的路径规划进行仿真测试,仿真结果表明该方法能缩小最优路径的查找范围,降低发现最优路径所需的循环次数,能有效提高最优路径的搜索效率,整体性能优于普通蚁群算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号