首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将煤液化残渣萃余物(以下简称萃余物)掺混到煤粉中进行共气化是萃余物大规模资源化利用的一种方式,实现萃余物与煤共气化首先要保证该混合物料的加压密相输送过程的稳定及可控。为研究萃余物掺混到煤粉后的加压密相输送规律,针对某气化装置的原料煤粉及该煤粉掺混20%萃余物的混合粉体,首先采用HR指数和FF函数表征方法对两种粉体的流动性进行比较分析,并结合粉体的扫描电镜照片来分析颗粒微观结构对粉体流动性的影响,然后在25 mm内径输送管道中,进行背压(接收罐压力) 4和2 MPa的加压密相输送实验研究,获取粉体质量流量和质量浓度随表观气速变化的输送操作规律,最后以粉体质量流量和水平直管段压差的平均波动和最大波动幅度作为输送稳定性的评价标准,通过大数据分析得到掺混萃余物对粉体输送稳定性的影响规律。结果表明:HR指数和FF函数表征方法均说明掺混20%萃余物会导致粉体的流动性变差;在相同表观气速下,高背压4 MPa下掺混20%萃余物对粉体输送过程的质量流量影响较小,而低背压2 MPa下掺混20%萃余物则会导致粉体输送的质量流量降低;在低表观气速区,掺混20%萃余物会导致输送过程中的粉体质量浓度降低,当表观气速增大至临界气速后,输送混合粉体和煤粉时管道内颗粒的质量浓度相近;当表观气速低于4 m/s时,掺混20%萃余物的粉体输送稳定性不如煤粉,当表观气速增大至4 m/s后,混合粉体的输送稳定性提高至煤粉输送同一水平,其质量流量平均波动幅度小于4%,最大波动幅度小于15%,水平直管段压差平均波动幅度小于8%,最大波动幅度小于40%。  相似文献   

2.
李军  李建  王良  张文秀 《煤炭技术》2014,(9):270-272
为了对煤制天然气项目气化工艺的选择和型煤气化可行性与经济性进行研究,通过对GSP干粉煤气化、Shell干粉煤气化、BGL固定床液态排渣加压气化和Lurgi碎煤固定床干法排渣加压气化进行对比分析研究,并以新疆某年产20亿m3煤制天然气项目为基础,对型煤气化工艺进行可行性与经济性分析。  相似文献   

3.
《煤炭技术》2017,(7):277-279
利用固定床反应装置,以CO_2为气化剂研究了无烟煤和烟煤配煤气化反应的特性,考察了反应温度(900℃~1 100℃)和掺混量对气体产物及CO_2转化率的影响,采用SEM对煤焦表面进行分析。结果表明:烟煤焦的孔隙结构比无烟煤焦发达,在相同温度下,烟煤焦气化活性高于无烟煤焦。混煤的气化活性近似线性增加,在无烟煤中配入烟煤可以有效地改善煤质,提高气化活性。  相似文献   

4.
为给输运床气化试验提供基础数据,采用加压滴管炉反应装置,以次烟煤为研究对象,研究了不同温度、不同压力、不同反应气氛下煤的热解产物特性,并分析了不同热解条件对煤焦结构、基础物化性质及其CO_2气化反应性的影响。结果表明:氢气气氛热解产物中CH_4、C_2H_4的产率超过氮气气氛条件下的3倍,且对煤焦剩余挥发分的影响不大,反应气氛对于失重率的影响因温度而异,600~800℃下常压加氢工况煤的热解失重率相比惰性气氛下更小,总压0.5 MPa含氢气氛则比惰性气氛下的失重率更大。对于热解焦的气化活性,常压加氢工况制得的热解焦,其气化活性高于氮气气氛热解焦,而加压工况的气氛是否含氢对气化活性的影响不显著,氢气与煤的反应主要表现为甲烷化反应,加氢工况提高了热解焦的孔比表面积和孔体积,但对煤焦的化学结构影响很小。  相似文献   

5.
液化残渣是煤炭液化过程的重要副产物,将其作为气化原料进行利用有助于提高煤炭综合利用效率。基于高频炉开展不同温度条件下(1 000,1 300℃)快速热解实验制取哈密淖毛湖长焰煤焦及其液化残渣焦,采用热重分析仪考察不同气化温度(1 000,1 100,1 200,1 300℃)下煤焦和液化残渣焦的气化反应活性,并借助扫描电子显微镜、物理吸附仪和激光拉曼光谱仪对样品的理化特性(孔隙结构与碳结构)进行系统表征以关联解释焦样气化反应活性。结果表明,哈密煤焦及其液化残渣焦的气化反应活性受气化温度、孔隙结构和碳结构的共同影响。相同热解和气化温度下煤焦气化反应活性高于液化残渣焦,主要由于煤焦和液化残渣焦孔隙结构和碳结构的差异:前者孔隙结构较后者更为发达,且碳结构有序度低于后者、无定形碳结构数量高于后者;气化温度从1 000℃升至1 300℃时,煤焦与液化残渣焦的反应性指数分别从0.43和0.38提高到0.81和0.79,反应指数比值从0.88提高到0.98,表明提高气化温度可以促进气化反应进行,但孔隙结构与碳结构对气化反应活性的影响减弱;气化温度为1 300℃时,温度成为影响气化反应活性的主要因素,...  相似文献   

6.
以煤焦油馏分油为溶剂,采用萃取—固液分离—溶剂回收等工艺,分离出了约占煤液化残渣总量50%的煤液化沥青,研究了固液分离对煤液化沥青灰分等参数的影响。对不同灰分的煤液化沥青进行了元素、工业和组分等分析,并在防水卷材、C/C复合材料浸渍剂沥青、中间相炭微球、针状焦和高比表面活性炭等方面进行了应用研究。剩下约50%的萃余物可作为气化原料,从而实现了煤液化残渣的高效、清洁利用,形成了一套煤液化残渣萃取分离及应用技术。  相似文献   

7.
为研究煤直接液化残渣萃余物与煤混合后的气力输送压降特性,本文在最大操作压力6 MPa,输送管道内径DN25和DN15的气力输送装置上,针对两种粉体M1(煤粉)和M2(煤粉掺混20%萃余物的混合粉体)展开了多工况的实验研究。结果表明:掺混萃余物会导致水平直管的压降大小和压降波动性增大,且在低气速区域该现象更为明显;采用水力光滑管计算公式来计算气相摩擦因数,当表观气速大于8 m/s时,压降计算值与实验值有较大误差,通过最小二乘法对气相压降进行优化计算后,得到DN25和DN15管道的壁面粗糙度分别为0.015 mm和0.013 mm,气相压降计算误差小于10%;通过量纲分析法得到颗粒相摩擦因数模型,M1和M2的压降计算值与实验值误差在30%以内;在低弗洛德数(Fr)下,M2的颗粒相摩擦因数明显高于M1,而随着Fr的增大,两者则趋向一致;气相压降是总压降中不可忽略的一部分,随着表观气速的增大,颗粒相压降占比逐渐减小;随着固气比的增大,颗粒相压降逐渐增大。  相似文献   

8.
王东飞 《煤》2011,20(9):28-30
不同的煤种,可选择的气化技术不同。在对潞安煤样进行工业分析、元素分析、发热量、灰成分和灰熔点测定的基础上,通过对潞安煤进行碎煤加压气化炉上的试烧试验,寻求最适合潞安煤质特性的气化方法。研究结果表明:潞安煤理想的气化工艺为碎煤加压气化工艺;潞安煤种灰熔融温度较高,在添加助熔剂后可以用于液态排渣的气化工艺。  相似文献   

9.
谷小会      赵渊      李培霖      钟金龙     《煤质技术》2020,35(2):1-6
焦油渣中挥发的有机烃类化合物易造成较为严重的环境问题,对焦油渣的较高处理成本导致其仍未能被有效处理与合理利用,因而有必要对焦油渣的性质和高附加值利用进行研究。对2种不同煤炭加工技术在生产中获得的焦油渣进行性质分析,并对焦油渣在高温高压下加氢裂化性能进行研究,即加氢裂化反应后得到的气体产物采用组分分析后得到气产率,对液固产物进行萃取分离后可得到不同条件下加氢裂化反应的氢耗、气产率、液相物产率和四氢呋喃不溶物的转化率。通过对不同加工途径所产生焦油渣的性质进行研究可发现,大多数焦油渣含有10%以上的水分和20%以上的焦油,焦化和气化工艺所产焦油渣中的灰分较高而中低温热解焦油渣的灰分相对较低,且其甲苯不溶物和四氢呋喃不溶物均高于中低温热解焦油渣。由2种典型焦油渣在不同的工艺条件、催化剂和供氢介质作用下加氢裂化的实验结果表明:通过改变工艺条件和催化剂,中低温热解焦油渣中95%以上的组分均能被裂解为轻质化合物,气化焦油渣中四氢呋喃可溶解的组分也能够进一步被裂解为轻质组分,而其固含物却难以再被进一步地裂解。  相似文献   

10.
利用高温高压装置研究了超临界甲醇对锡林浩特褐煤的处理过程,考察了温度、压力、催化剂及脱灰处理等因素对褐煤处理效果的影响,同时通过对萃取物和萃余残煤分别进行红外光谱表征和化学分析,探讨了处理过程中褐煤含氧官能团的脱除规律.结果表明,以NaOH为催化剂,反应压力9.0MPa,温度310℃,即达到甲醇的超临界状态时,煤的平均萃取率可达22.47%,此时停留时间为60min为宜,溶煤质量比约为5∶1;在温度300C、压力8.5 MPa以上,煤中的羧基和酚羟基基本脱除完全,而羰基的脱除率为10.74%;当温度达到330℃时,羰基的脱除率最高,为32.28%.  相似文献   

11.
徐朝芬  孙路石  许凯  胡松  向军  帅超 《煤炭学报》2012,37(12):2097-2101
选取淮南烟煤在不同升温速率条件下制得的快焦和慢焦,采用高温加压热重分析仪考察其在不同压力下的CO2气化特性并计算气化反应动力学参数。研究表明:快速热解煤焦(HN-RP)的表面较为疏松,相比慢速热解煤焦(HN-SP),孔隙结构显得更为发达;相较于快焦,慢焦平行定向程度更高,芳香层片尺度也更大,即碳微晶结构有序化程度更高,因而煤焦气化反应活性较差;反应压力的增加使活性中间络合物C(O)含量增加,其附着在煤焦的表面使煤焦的气化反应速率增大;总包气化反应动力学表达式可以很好地对煤焦的加压气化反应动力学参数进行计算,在主要的反应区域内,得到的相关系数均大于0.988,且随着反应压力的增大,快焦和慢焦的气化反应级数 n 都有逐渐减小的趋势。  相似文献   

12.
从7种煤样中筛选出3种制焦配煤,利用高温热解实验装置在不同热解温度条件下制备3种煤焦,分析了温度对热解产物分布的影响规律,测定了煤焦的比表面积、孔体积及孔径分布特征,并揭示了煤焦孔隙特性及煤种与煤焦的CO2气化反应活性的相互关系。结果表明,随热解温度的升高,3种煤焦收率下降,同等温度条件下,配煤CY/QM制得的煤焦收率最低;在制焦终温低于1 150℃时,煤焦的比表面积及孔体积随制焦温度的提高而增大,气化活性亦随之增加,不同配煤所制得的煤焦反应性大小顺序为:CY/QMCY/QM/JMCY/GSJM;而在制焦温度达到1 150℃之后,煤焦部分孔结构坍塌,其气化活性不再明显增加,3种配煤所制得煤焦的反应性亦相差不大。  相似文献   

13.
将低变质煤在高压反应釜中进行不同温度(100℃~250℃)的水热提质试验,然后采用非等温热重分析法对不同提质煤进行CO2气氛下的气化特性分析。分析结果表明,水热提质后煤样表面形貌发生较大变化,煤整体结构发生收缩,表面结构致密化并产生裂缝和断裂。原煤和提质煤在气化过程中均经历了热解和碳气化这2个主反应段。随着水热温度增加,提质煤由于挥发分含量减小使其热解段的反应速率明显下降,而碳气化段反应速率增加不明显;在碳气化段,提质煤的碳转化率随着水热温度的升高而有所增加,煤焦气化活性指数整体上略呈增大趋势。研究表明,该低变质煤提质后的气化活性受物理孔隙结构变化的影响可能超过煤阶和化学微晶结构等因素的影响。  相似文献   

14.
目前我国煤化工行业多年持续发展使得国内煤气化系统细渣处理量高速增加。气化细渣经真空带式或板框过滤机过滤后含水率普遍达到40%~60%,干基残碳质量分数通常在18%~50%。煤气化细渣的无害化处理和资源化利用已成为当前国内外煤化工行业亟待解决的痛点。以水煤浆气化细渣的特性为基础,从气化细渣的残碳(热值)、含水率、掺烧比例和混合燃烧特性等方面研究了水煤浆气化细渣对掺烧的影响。陕煤集团渭化公司水煤浆气化炉气化细渣经过深度脱水干化后含水率降低到28%,输送简单方便,与原料煤掺混后混合燃料的流动性不会造成堵煤断煤,调整混合燃料的含水率和热值等满足CFB锅炉要求后,对锅炉换热效率和运行寿命影响不大。针对气化细渣掺烧进CFB锅炉的运行情况进行分析,掺烧后锅炉运行参数如床层温度、烟气氧含量、排烟温度、床层差压等变化不大;烟气中SO2,NOx质量浓度未剧烈变化,不会影响到锅炉脱硫脱硝系统。掺烧前锅炉飞灰含碳量在10%~20%,掺烧后降低到5%~10%,证明合适的掺加量对燃烧有促进作用。气化细渣掺烧后,由于其灰分较原料煤高,进入烟道的飞灰总量将增加,在掺烧比例&...  相似文献   

15.
《煤矿机械》2021,42(9):55-57
针对穿层钻孔施工(水力冲孔)过程中煤水(气)混合物无法有效分离、计量不准、工作人员劳动强度大等难题,研制了履带式煤水(气)分离及计量输送装置。装置采用履带行走,转动部分采用液压控制,气、水分离及计量系统采用集成智能控制,达到全部自动化的目标。煤水(气)混合物通过防喷装置排渣口进入流量自动控制装置,通过高、低浓度瓦斯分源抽采,实现多台钻机平行作业期间抽采能力合理匹配;通过螺旋输送机及条缝筛的合理布置,实现了煤水混合物的煤、水自动分离,同时通过螺旋输送机下部的存水实现瓦斯有效密封;当煤渣达到箱体设计煤量时触发煤位传感器释放信号,驱动计量箱体旋转,空箱体继续接煤,含煤箱体将煤渣倒入输送装置,并完成一次计量;输送装置将煤渣输送至矿车或输送带上,运离施工地点。  相似文献   

16.
为了考察基于无焰氧化技术所提出的新型干煤粉气流床气化炉的气化特性,采用数值模拟对典型工况下高灰熔点煤粉在炉内气化过程进行了三维模拟研究。结果表明,该炉型结构能够使炉内温度场均匀,平均温度水平上升,气化强度增强,从而实现了基于无焰氧化技术煤粉空间气化反应的基本特征;温度峰值显著下降,降低了对炉壁材料的要求;同时,排渣口处温度水平的升高使得灰渣的黏度降低,有利于高灰熔点煤液态排渣的顺利进行  相似文献   

17.
焦海丽  王美君  孔娇  郭江  常丽萍 《煤炭学报》2019,44(5):1601-1608
选取长焰煤、气煤及肥煤为原料,通过调配比例得到不同配合煤,采用捣固方法,在终温为1 150℃的程序升温马弗炉中制备坩埚焦,利用实验室固定床反应器考察煤焦的水蒸气气化反应性,并对产气量及产品气组成进行测试。结果表明,配合煤焦水蒸气气化反应性及产品气组成与配合煤比例的变化密切相关,配合煤中对焦的水蒸气气化反应性起提高作用的煤种的顺序为:长焰煤气煤肥煤。气化过程中煤焦孔隙结构的变化行为是影响煤焦反应性的主要因素,具有较大煤阶差的长焰煤与肥煤比例的相对变化对焦结构的影响最为显著,对焦的反应性的影响也最为明显。配合煤比例变化影响催化性矿物质在焦中的含量,适度增加配合煤中肥煤及气煤的比例有利于催化性矿物质在焦中的滞留,当配合煤中肥煤比例为0. 3左右时,该影响作用最为显著,煤种比例变化对配合煤挥发分组成及热解过程孔隙结构发展的影响会改变催化性矿物质在焦中的含量。焦中催化性矿物质可以促进焦气化反应过程中水煤气变换反应的发生,进而可以调变产品气的组成。在利用过剩焦化产能及低质炼焦煤制备气化焦的过程中,研究结果可以为调配配煤方案以有效改善气化焦的反应性并调变产品气的组成提供理论依据。  相似文献   

18.
神华煤及其液化残渣水蒸气气化动力学研究   总被引:1,自引:0,他引:1  
为研究神华煤半焦和神华煤直接液化残渣半焦的水蒸气气化动力学过程,利用不同温度下神华煤半焦和残渣半焦水蒸气气化碳转化率曲线,采用均相反应模型(HM)和未反应缩芯模型(SCM)对神华煤和残渣的水蒸气气化动力学进行了模拟,得到煤半焦和残渣半焦均相反应模型和未反应缩芯模型的Arrhenius方程式。将模拟结果和试验数值进行比较,发现均相反应模型和未反应缩芯模型都能较好地模拟煤半焦和残渣半焦的水蒸气气化过程,且均相反应模型的模拟结果要好于未反应缩芯模型的模拟结果。  相似文献   

19.
固定床液态熔渣气化炉采用固定床加压气化、液态排渣技术,液态熔渣气化炉与其他固定床工艺相比具有气化温度、气化效率、有效气含量均高以及蒸汽使用量少、废水产量低等优点。液态熔渣控制是熔渣气化炉稳定运行的重中之重,研究熔渣气化炉渣池液位控制方法具有重要意义。为保证固定床熔渣气化炉液态熔渣的顺利排出,通过研究原料煤品质、助熔剂配比、汽氧比、烧嘴火焰温度、排渣控制参数设置及操作经验等因素对气化炉排渣的影响,提出液态熔渣排渣控制方法。结果表明:CaO含量控制在35%~40%则可降低液态渣的灰熔融温度,通过调整石灰石配比将液渣黏度控制在1~3 Pa·s,可保证液态渣的流动性;烧嘴火焰温度影响排渣口处液渣的温度,将其控制在1 700~1 750℃时其液渣流动性最佳;汽氧比对渣温同样具有重要影响,汽氧比低会使燃烧反应加剧、气化炉反应温度升高,可通过熔渣颜色判断汽氧比状况,汽氧比控制在0.88~0.92 kg/Nm3最佳;气化炉稳定运行时,下渣时间控制为禁止排渣时间(T1)为120~200 s,允许排渣时间(T2)为100 s,下渣时间(T<...  相似文献   

20.
选用双鸭山东荣长焰煤为样品,利用马弗炉进行了中低温热解试验,考察了热解温度、升温速度和保温时间等对半焦的产率、组成和发热量的影响,并以水焦浆气化对原料的要求为导向,研究热解温度对半焦气化反应活性和可磨性的影响.研究结果表明在热解工艺条件中,热解温度对半焦的产率、组成和发热量的影响最大,随着热解温度的提高,热解半焦产率和气化反应活性均降低,半焦灰分升高.热解温度在400~700℃下所制半焦的内在水分、发热量和可磨性均满足水焦浆气化的基本要求,且当热解温度在400~450℃时,所得半焦的哈氏可磨度更高,预测的成浆性也更好,综合分析可确定,热解温度控制在400~450℃之间制备的长焰煤半焦适用于水焦浆气化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号