首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在城市交通中,时常出现电动车骑行者引发的安全事故.佩戴安全头盔可以有效地避免或降低安全事故带来的损害,因此目前多个城市已经颁布了佩戴安全头盔的相关法规.针对现有的安全头盔佩戴检测准确率低的问题,提出了一种基于改进YOLOv3的安全头盔佩戴检测算法.该改进算法采取了通道和空间注意力模块的加权特征融合,并结合密集连接网络以...  相似文献   

2.
深度学习技术的快速发展推动了电力智能安防的自动化进程.电力场景中用于高压电力塔和接触网搭建的复杂钢结构往往成为铁路沿线鸟类筑巢之所,给电力系统安全运行带来了隐患.因此,使用深度学习技术及时发现并清理鸟巢具有重要的实际意义.提出了一种基于改进YOLOv5的鸟巢检测方法,该方法在YOLOv5基础上考虑了鸟巢本身所独有的黑色属性和错综复杂的纹理特性,采用注意力机制强化鸟巢检测过程中对上述特征的学习.同时,根据电力场景中采集的实际鸟巢数据对该方法开展的验证性实验取得了良好的检测效果,算法检测性能达到88.6%,相比其他经典检测算法高1.5%以上.  相似文献   

3.
为解决现有安全帽和反光衣检测模型对小目标和复杂天气中目标检测精度低、环境干扰因素大、难以在性能一般移动设备部署等问题,设计实现一种改进YOLOv8安全装备检测模型YOLOv8-DSI。首先,设计基于残差思想和并行空洞卷积的DR-SPPF模块,进一步扩大感受野且不损失图像分辨率,显著提升复杂天气检测精度;其次,在特征融合阶段设计结构轻量特征金字塔网络ST-BiFPN,进一步减小模型参数量,实现高效多尺度特征融合;最后,引入Inner-ShapeIoU损失函数,使得边界框回归更加准确,增强检测效果。在自建数据集上,相较于基线模型mAP50和mAP50:95分别提升了2.1%和4.7%,而模型参数量仅为2.4 M,计算量仅为7.3 G,分别降低了10.9%和20.0%。最终将改进模型部署到Jetson Orin Nano边缘设备,通过在开发板实际运行证明,改进后模型在复杂场景下有效性和可应用性。  相似文献   

4.
目前目标检测算法由于数量和背景不平衡导致的电力部件检测精度不高,同时在背景复杂的情况下分类定位不准确.针对上述问题,提出一种改进的YOLOv3的变压器检测算法,使用DarkNet-53深度卷积神经网络作为抽取图像特征的骨干网络.使用Focal loss和均衡交叉熵函数改进原YOLOv3的损失函数,使模型在样本数量少的类...  相似文献   

5.
6.
针对电力设备异常发热故障诊断过程中识别目标设备单一、红外数据集样本数目庞大、平均识别准确率较低和识别速率较低的问题,提出一种基于深度卷积神经网络的改进YOLOv3目标检测方法,识别和定位绝缘子、隔离开关触头、套管、线夹4类电力设备及其异常发热区域.在改进YOLOv3算法的训练过程中,网络将数据集图片裁剪为416×416...  相似文献   

7.
针对目前钢板缺陷检测精度和速度的不足,提出了一种改进的YOLOv3检测算法.首先使用小波-中值滤波处理缺陷图像,清除图像里的噪声使图像更平滑.然后在原有网络中的密集连接网络(Darknet-53)上增加一个尺度输出增强算法对小目标缺陷的识别能力.最后为了增强算法模型的准确性对算法原有的损失函数进行优化,得到改进版的YO...  相似文献   

8.
传统的目标检测方法在检测输电线路小目标时,往往存在检测效果不佳,容错率低等问题,针对这种情况,提出一种基于改进的YOLOv4的输电线路小目标检测算法.为了提高输电线路小目标的检测效率,采用一种简化版的YOLOv4算法,减少特征层的使用,从而降低网络计算量.针对输电线路小目标这一特定应用,利用K-means++算法重新进...  相似文献   

9.
针对传统方法检测锂电池表面缺陷精度低、速度慢的问题,提出一种改进的YOLOv4算法。首先,在 CSPDarknet-53 骨干网络中使用空洞卷积代替传统卷积,提高了对不同尺度缺陷的检测。其次,将通道注意力机制插入到颈部网络中,自适应地选择一维卷积核的大小,降低模型的复杂度和计算量。最后,在分类和边界框回归中融合条件卷积来提高网络性能,并扩大数据集以解决由于缺陷样本太少而导致的网络训练过拟合问题。实验结果表明,改进后的YOLOv4算法可以有效检测锂电池表面缺陷并提高对于缺陷的识别和定位能力。改进算法的平均精度均值为93.46%,相较原算法提高了3.03%。  相似文献   

10.
安全帽作为防止人员头部受到伤害的防护用品,在进入电厂等高危场所时,要求必须佩戴。在实际工作中,不佩戴安全帽进入作业现场的情况时有发生。为解决这一问题,提出了一种基于安全帽的智能化检测技术。该技术使用YOLOv5算法对数据进行训练,并采用YOLOv5系列中网络深度和宽度最小的YOLOv5s模型。试验结果表明,在自采数据集中训练并检测,平均精度达95.4%,能够满足电厂等高危场所对人员不按规定佩戴安全帽的实时监测要求。  相似文献   

11.
红外图像检测技术因具有非接触、快速等优点,被广泛应用于电力设备的监测与诊断中,而对设备快速精确地检测定位是实现自动检测与诊断的前提.与普通目标的可见光图像相比,电力设备的红外图像可能存在背景复杂、对比度低、目标特征相近、长宽比偏大等特征,采用原始的YOLOv3模型难以精确定位到目标.针对此问题,该文对YOLOv3模型进...  相似文献   

12.
刘东东 《电工技术》2022,(2):151-155
为解决目前人工处理分析无人机巡检图像效率低、检测结果受人为因素影响较大的问题,提出了一种用于 检测绝缘子缺陷的改进 YOLOv4故障检测模型.通过改进普通卷积算法以提升检测速度,使用数据增强方法提高 YOLOv4对绝缘子缺陷检测性能,解决实际检测环境中缺陷图像数量少且识别精度低的问题.试验结果表明,所提方 法的缺陷检测精度和召回率分别为0.91和0.96,能够满足电力线路绝缘子缺陷检测的鲁棒性和准确性要求。  相似文献   

13.
王立永  纪斌  吴红林 《电气传动》2021,51(21):76-80
针对传统电力系统设备运行状态监测方法存在监测精度低、延时长等问题,提出基于改进排列熵算法的电力系统设备状态智能识别方法.在电力系统设备参数分布强度和控制参数约束下,更新电力系统设备故障特征信息分布传输序列,通过构建电力系统设备运行状态的量化参数模型,对电力系统设备状态约束参量进行辨识;通过信息熵的优化排序方法,获取电力系统设备状态监测和优化特征,采用小扰动抑制方法,结合小信号扰动识别,实现电力系统设备状态智能识别.试验结果表明,采用所提方法识别电力系统设备状态的精度始终高于90%,且耗时较短.  相似文献   

14.
由于变电设备智能组件在复杂高压的环境中运行,易发生火灾等安全事故,因此为了对变电设备智能组件进行安全监测,提出基于自适应阈值小波的图像边缘检测算法对变电设备智能组件发生火灾时进行图像去噪和火灾轮廓特征提取,有效提高火灾报警性能.首先建立多目视觉传感器对变电设备现场进行图像采集,然后对采集的图像首先经过Rgb2gray颜...  相似文献   

15.
基于遗传算法的区域电网智能保护   总被引:6,自引:7,他引:6  
通过对广域保护应用基础研究,提出一种利用区域电网信息的智能保护系统,与现有主保护协同工作,加强电网继电保护水平,简化后备保护。同时,针对广域信息采集易受干扰而出现信息丢失或畸变等实际问题,以及现有广域保护原理对此考虑不足的情况,提出了包括基于状态关联的区域保护原理与基于遗传算法故障判别原理的区域电网智能保护的决策模块及其工作机制。建立了基于遗传算法的故障数学模型,仿真试验验证了该模型的有效性及高容错性。  相似文献   

16.
近年来,我国智能电网建设进程持续深化,促使智能变电站数量渐渐增多,极大程度地扩大其发展空间及发展前景.相较于传统变电站,智能变电站的二次设备使用、网络通信及组织结构等存在着明显的差异.换言之,智能变电站的应用优势相对突出,但是具体运行期间仍存在着较多安全性问题亟待解决.本文以智能变电站继电保护为切入点,分析其现存问题,然后提出具体的安全措施,旨在提高智能变电站继电保护运行的可靠性及安全性.  相似文献   

17.
基于无人机和巡检机器人搭载的多光谱成像检测是高压设备非接触检测的发展趋势,而主要电气设备的识别是其绝缘状态智能诊断的基础.该文建立了绝缘子、均压环、防振锤、套管和导线训练与测试数据库;基于YOLOv4,改进了Mosaic数据扩充算法,使网络误差降低了0.7,识别准确度提高到84.3%;研究了基于边界框回归的交并比(IoU)算法对不同尺度检测目标的影响,提出了对大、小目标分别采用CIoU和GIoU的训练策略;研究了K-means和分层聚类算法对自建数据库的标注值宽高数据聚类效果及检测结果的影响;基于误差、识别准确度和训练速度,研究并优化了YOLOv4的网络参数,改进后的模型训练误差降低了3%,识别准确度提高了0.8%,较好地实现了主要电气设备的识别.该研究可用于多光谱成像电气设备运行状态的现场诊断.  相似文献   

18.
针对继保设备运行状态表征的模糊特性,引入模糊数学中的模糊综合评判模型来作为继保设备运行状态量化的手段,以实现对其作出准确评估,进而制定合理的检修策略。实例证明,该类算法简单、有效,能在大幅削减检修费用的同时提升变电站系统的可靠性,值得智能变电站推广使用。  相似文献   

19.
To address the problems of low detection accuracy and slow speed of traditional vision in the pharmaceutical industry, a YOLOv5s-EBD defect detection algorithm: Based on YOLOv5 network, firstly, the channel attention mechanism is introduced into the network to focus the network on defects similar to the pill background, re-ducing the time-consuming scanning of invalid backgrounds; the PANet module in the network is then replaced with BiFPN for differential fusion of different features; finally, Depth-wise separable convolution is used in-stead of standard convolution to achieve the output Finally, Depth-wise separable convolution is used instead of standard convolution to achieve the output feature map requirements of standard convolution with less number of parameters and computation, and improve detection speed. the improved model is able to detect all types of defects in tablets with an accuracy of over 94% and a detection speed of 123.8 fps, which is 4.27% higher than the unimproved YOLOv5 network model with 5.2 fps.  相似文献   

20.
基于改进k-means算法的海量智能用电数据分析   总被引:1,自引:0,他引:1  
针对智能用电数据挖掘面临数据量大、挖掘效率低等难题,进行Map-Reduce模型下基于改进k-means的海量用电数据分析研究。以家庭用户为例,建立了家庭用户用电信息的家庭用户号、房屋面积、家庭成员数、每天用电量、峰谷电量、家用电器数等的数据维度模型,利用k-means算法简单、收敛速度快的优势,克服其容易陷入局部最优解的缺陷,综合考虑初始聚类中心的选择及聚类个数的选取2个因素,以数据对象密度的大小作为初始聚类中心的选取标准,将簇间距离及簇内对象的分散程度作为聚类数目选择的重要参考,对k-means算法进行改进;为提高数据处理效率,进行Map-Reduce处理模型下的海量家庭用户用电数据的并行挖掘。通过在Hadoop集群上进行实验,结果证明提出的算法运行稳定、高效、可行,且具有良好的加速比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号