首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
余舜辉  陈砺 《制冷》2001,20(2):43-47
利用多孔性物质的吸附分离原理分析了固体吸附式制冷系统中吸附剂颗粒和整个吸附床的传热传质特性,并在此基础上介绍了目前国内外强化吸附床传热传质性能的主要措施。  相似文献   

2.
相对于单级吸附式制冷,两级吸附式制冷对热源温度和环境冷却温度适用范围更广。本文采用膨胀硫化石墨为基质,研制了氯化钙/氯化钡-氨两级吸附式制冷系统并进行了实验研究。吸附床采用传热传质强化后的新型固化吸附剂,利用新型非翅片式填充方式,有效降低了吸附系统的质量,增加了紧凑性。结果表明:两级吸附式制冷系统可以很好地适应热源温度低于100℃的工况,其性能在多数工况下高于单级吸附式制冷,系统COP与SCP随氯化钙解吸时间先增加后减小,COP最大可达0.27,SCP最大可达132.5 W/kg。  相似文献   

3.
在吸附制冷系统中,常用的吸附剂为粉末或颗粒形态,吸附剂颗粒之间的热阻和吸附剂与传热面之间的接触热阻很大,而采用固化吸附剂可以有效提高吸附剂的导热性能。本文以硫化膨胀石墨(ENG-TSA)为基质制备了固化活性炭(AC)吸附剂和固化氯化钙(Ca Cl2)吸附剂,针对固化吸附剂设计了无翅片的吸附床结构,并建立了一个低压蒸气驱动的吸附式制冷系统。通过实验对固化吸附剂的性能进行了测试,分析了吸附剂的传热性能、循环时间和蒸发/冷凝温度对吸附制冷系统性能的影响。结果表明:采用AC/ENG-TSA吸附剂,系统COP、SCP和体积制冷密度分别达到0.140,86.1 W/kg和16.11 k W/m~3;采用CaCl_2/ENGTSA吸附剂,系统COP、SCP和体积制冷密度分别达到0.279,288.6 W/kg和54.03 k W/m~3,性能较传统的吸附剂有明显的提高。  相似文献   

4.
相比于传统的吸附式制冷,再吸附制冷作为一种新型的制冷方式,其结构更加简单,并且其制冷性能系数也比相同条件下的吸附式制冷系统要高,故有较好的应用前景。但受到吸附剂的传热传质性能的限制,难以实现高效的再吸附制冷。本文利用硫化石墨作为吸附剂的基质,对其导热系数以及渗透率进行了测试比较,优选吸附剂。并且针对再吸附制冷系统建立了相关数学模型,分析不同工况条件下吸附剂工质对的性能。对整个再吸附制冷过程进行模拟仿真,从而得到不同工况下的制冷性能。结果表明,采用新型复合吸附剂的再吸附系统,COP最大可达到0.3以上,SCP最大可达到161 W/kg。  相似文献   

5.
固体吸附式制冷系统中吸附剂一般是多孔介质结构,吸附剂的内部结构特征对传热特性和吸附质的传质特性有直接影响,进而影响吸附解吸时间。本文探讨利用分形理论来分析固体吸附剂的结构特点,为目前通过对吸附剂的固化处理来提高吸附剂的传热速率的处理方法提供理论上的分析,并指出最佳分形维数的分形结构。  相似文献   

6.
固体吸附式制冷系统中吸附床内填充的吸附剂是一种多孔材料,由于多孔结构的存在,床体与吸附剂颗粒及吸附剂颗粒之间存在较大的热阻,因而存在传热速率慢,传热不均匀的缺点;在已有的板翅式吸附床基础上提出了一种新型针刺板吸附床,利用针刺丰富的扩展表面作为传热面,解决吸附剂内传热速率慢、温度场不均匀的问题。  相似文献   

7.
随着新型制冷方式的发展,越来越多的学者专家开始投入到吸附式制冷的研究领域,在吸附式制冷中,吸附剂的传热性能是影响其效率的主要因素之一。为更好的制备规整复合吸附剂有必要对散状吸附剂进行研究。本文就散状吸附剂的性能进行测试分析,设计了一种既适用于散状吸附剂又适合规整复合吸附剂的吸附性能测试系统。同时,对GC、GC10、GC20、GC30、GC40五种规整的复合吸附剂进行了吸附性能测试实验。  相似文献   

8.
非平衡吸附特征的吸附床传热传质特性   总被引:1,自引:0,他引:1  
建立椰壳活性炭-甲醇吸附式制冷系统吸附床传热传质数学模型,应用该模型进行具有非平衡吸附特性的吸附床传热传质研究,利用数值方法对数学模型进行求解,讨论了吸附床在冷却过程中吸附剂温度、吸附速率、吸附量、制冷系数以及单位质量吸附剂制冷功率与时间的关系,吸附床在加热过程中吸附剂温度、脱附速率及脱附量与时间的关系.研究结果表明:吸附床在整个吸附过程中的吸附速率存在一个峰值0.001 2 ks/s,吸附床在整个脱附过程中的脱附速率存在一个峰值0.001 7ks/s,吸附剂温度变化率在换热阶段趋于平缓,制冷系数值在吸附阶段近似呈线性增长,而单位质量吸附荆制冷功率在吸附阶段存在一个峰值35 kW/kW.  相似文献   

9.
新型复合吸附剂在吸附式冷冻机组中的应用   总被引:1,自引:0,他引:1  
研制了一台采用新型复合吸附剂的吸附式冷冻机组,并对该机组进行了性能测试.测试结果表明,新型复合吸附剂在加热过程和冷却过程中的导热系数分别为0.72W·m-1·℃-1和0.56W·m-1·℃-1,复合吸附剂的强导热性能结合吸附单元管翅片强化换热,使得吸附床在冷却和加热过程中的传热系数达到了745.4W·m-2·℃-1和832.6W·m-1·℃-1,与以前类似的系统相比,性能分别提高了265%和300%.吸附剂的平均吸附速度达到了3.5×10-4kg·kg-1·s-1,比文献中的平均吸附速度提高了30%.说明新型复合吸附剂不仅可以提高吸附床的传热性能,而且可以提高吸附剂的传质性能,大大缩短了吸附式冷冻系统的循环周期,提高了机组单位质量的制冷量. ℃<'-1>,复合吸附剂的强导热性能结合吸附单元管翅片强化换热,使得吸附床在冷却和加热过程中的传热系数达到了745.4W·m<'-2>·℃<'-1>和832.6W·m<'-1>·℃<'-1>,与以前类似的系统相比,性能分别提高了265%和300%.吸附剂的平均吸附速度达到了3.5×10<'-4>kg·kg< -1>·s<'-1>,比文献中的平均吸附速度提高了30%.说明新型复合吸附剂不仅可以提高吸附床的传热性能,而且可以提高吸附剂的传质性能,大大缩短了吸附式冷冻系统的循环周期  相似文献   

10.
热管技术在吸附式制冷系统中的应用   总被引:2,自引:0,他引:2  
主要介绍了热管技术在吸附式制冷系统中的国内外研究现状,分别对传统热管、热虹吸热管及分离式热管型吸附制冷系统的研究成果和典型样机做了阐述.为了减少双吸附器、双冷凝器、双蒸发器结构的硅胶-水吸附制冷机组的冷量损失,采用热虹吸热管技术实现了两蒸发器间工作状态的自动切换,该机组能够有效利用65~85℃范围内的低温热源,可提供6~10kW的制冷量,系统COP为0.31~0.43;采用同样技术的小型紧凑式固体吸附制冷空调机在典型空调工况下其COP为0.34;基于分离式热管技术的渔船用复合吸附制冰机解决了高温尾气及海水对吸附床的腐蚀问题,吸附床的加热解吸、冷却吸附及回热过程均由无外加驱动力的多功能热管完成.热管技术的应用强化了吸附机组的传热性能,进而提高了机组的制冷能力及工作可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号