首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A mathematical study is made to compute the doorway flow behavior due to fire in a room. Two approaches were taken, first a model attempting to include the effect of fire entrainment and vent mixing; second was a model based on an ideal point source plume fire—both in the zone model concept. Limiting analytic results were found for the latter to give insight into the physics. The results were compared to available flow data, and an approximate formula was developed to predict the doorway mass flow rate to within 20% for a wide range of fire conditions. CFD computations were also explored using FDS. Results are compared from FDS and the zone model with experimental data for a wide range of variables.  相似文献   

2.
Bin Xiao 《Fire Technology》2012,48(3):595-614
The ability to calculate the changes to vent flows when a sprinkler activates can lead to improved predictions of fire environments outside of the room of origin in sprinklered occupancies, ultimately leading to an engineering design tool based on numerical simulations. Hence, for the current study, numerical calculations using NIST Fire Dynamics Simulator (FDS) are compared with real scale compartment experimental data for unsprinklered and sprinklered cases. Mass flow rate and temperature are typical parameters used to quantify the flow induced by a fire in a compartment. Hence, numerical results for doorway mass flow rate and temperature are compared with the experimental data for three fire sizes in order to validate the numerical model. Then, using current experimental data for sprinkler characteristics, numerical calculations for doorway mass flow rate and temperature are compared with the experimental data for the three fire sizes of the sprinklered case.  相似文献   

3.
A series of full-scale steady-state experiments was conducted to study the high temperature fire-induced flows through doorway openings connecting a burn room to a second room containing a hot gas layer. A propane diffusion burner served as the energy source. Fire strength and doorway width were varied. Measurements included two-dimensional velocity and temperature profiles within the opening and vertical gas temperature profiles within the rooms. Opening mass flows were determined from the opening data. These mass flows are explained in terms of a static pressure model based on actual gas temperature profiles in the two rooms and an orifice coefficient of 0.68. It is also shown that the simple relationship between mass flow rate through the opening, Ma, and ventilation parameter, (W, opening width; H, opening height) holds even when the opening is in the wall between two rooms. The proportionality constant for this simple relationship may depend on the configuration.  相似文献   

4.
《Fire Safety Journal》2005,40(4):320-330
An experimental study is carried out on a reduced scale tunnel model (scale reduction is 1:20). The main objective is to evaluate the longitudinal velocity induced into a tunnel when a fire plume continuously released is confined and extracted between two exhaust vents located on both sides of the fire source. For the experimental simulations, fire-induced smoke is simulated by an air and helium mix release. Smoke flow is symmetrical as regards the fire location and experiments are realized for an half tunnel with only one vent activated downstream the source. The vent extraction flow rate is step by step increased and the length of the stratified smoke layer downstream the vent as well as the longitudinal fresh air flow induced, are measured. A confinement velocity is then associated to the minimum value of the longitudinal air flow needed to prevent the smoke layer propagation downstream the vent. This velocity is evaluated for several values of the fire heat release rate and finally compared with the corresponding critical velocity obtained for a longitudinal ventilation system.  相似文献   

5.
Gas velocity measurements were conducted in the doorway of an enclosure containing a natural gas fire. Two independent measurement techniques, Stereoscopic Particle Image Velocimetry (SPIV) and bi-directional impact-pressure probes, were utilized for comparison – the first such comparison for a fire-induced flow in a full-scale structural fire. Gas velocities inferred from the bi-directional probe measurements were consistently greater than SPIV measurements in a region of the flow between the floor and the flow interface. The comparison revealed that a measurement bias exists in the bi-directional probe technique. Estimates of the relative magnitude of the bias were inferred from the results.  相似文献   

6.
《Building and Environment》2005,40(7):897-906
Air flow rates through a doorway are important in modelling compartment fires. The ventilation factor is regarded as a key parameter and numerous efforts have been made on deriving the correlation of air flow rates with it. Most of the correlation expressions reported in the literature were derived empirically from experiments. The results might be different if the fire geometry, fuel type and ambient conditions are changed. Further, the heat release rates measured in most of the experiments were based on the mass loss rate of fuel, not by the oxygen consumption method. There might be some deviations from the actual heat release rates.Computational fluid dynamics (CFD) is now a practical tool in fire engineering. Aerodynamics through a doorway induced by a compartment fire can be simulated accurately. Factors which are difficult to control in experiments but affecting the doorway flow can be studied.The Fire Dynamics Simulator (FDS) developed by the National Institute of Standards and Technology, USA, is one of such CFD software. This is a product achieved from long-term research on developing a CFD model capable of carrying out fire simulations. This model is different from the others based on the Reynolds Averaging Navier–Stokes equations method. Physical processes occuring at small length and time scales were modelled by large eddy simulation (LES). Larger length scale on buoyancy-induced turbulence flow structure was computed directly from the set of equations with acoustic waves filtered out. The new version of this CFD package, FDS version 3.01, is now applied to derive equations on doorway flow rates induced by a fire. Results will be compared with those reported in the literature.  相似文献   

7.
8.
A new method of calculating water flows for firefighting is developed. The method consists of determining fire flows for offensive operations (extinguishing the source) and defensive operations (protecting exposures).Fire flow for offensive operations is based on fire load densities for building occupancies and the area of the fire, which, combined with time to extinguishment, establish the heat release rate. When also combined with the cooling efficiency of water, a fire flow is determined. Fire flow for defensive operations uses the heat release rate and considers the view factors for the exterior walls coupled with unprotected openings in those walls. Total fire flow is the sum of the flows for offensive and defensive operations.  相似文献   

9.
《Fire Safety Journal》1997,28(3):253-287
An algorithm and associated FORTRAN 77 subroutine, called VENTCF2, for calculating the effects on two-layer compartment fire environments of the quasi-steady flow through a circular, shallow (i.e. small ratio of depth-to-diameter), horizontal vent connecting two spaces is presented. The two spaces can be either two inside rooms of a multi-room facility or one inside room and the outside ambient environment local to the vent. The flow is determined by consideration of standard orifice-type flows driven by cross-vent pressure differences and, when appropriate, the combined pressure- and buoyancy-driven flows which occur when the density configuration across the vent is unstable, i.e. a relatively cool, dense gas in the upper space overlays a less dense gas in the lower space. The algorithm calculates rates of flow exchange between the two spaces based on previously reported model equations. Characteristics of geometry and the instantaneous environments of the two spaces are assumed to be known and specified as inputs. Outputs calculated are the rates and properties of the vent flow at the elevation of the vent as it enters the top space from the bottom space and/or as it enters the bottom space from the top space. Rates of mass, enthalpy and products of combustion extracted by the vent flows from upper and lower layers of inside room environments and from outside ambient spaces are determined explicitly. VENTCF2 is an advanced version of the algorithm /subroutine VENTCF in that it includes an improved theoretical and experimental basis. The subroutine is completely modular and it is suitable for general use in two-layer, multi-room, zone-type fire model computer codes. It has been tested numerically over a wide range of input variables and the results of some of these tests are described.  相似文献   

10.
A one-dimensional numerical model to predict fire-induced spalling in concrete structures is presented. The model is based on pore pressure calculations in concrete, as a function of time. Principles of mechanics and thermodynamics are applied to predict pore pressure in concrete structures exposed to fire. An assessment of the possibility of tensile fracture is made by comparing the computed pore pressure with temperature-dependent tensile strength. The pore pressure calculations are coupled with heat transfer analysis to ensure that the loss of concrete section, resulting from spalling, is accounted for in subsequent heat transfer analysis. The validity of the numerical model is established by comparing temperature, pore pressure, and concrete spalling predictions with results from fire tests. The computer program is applied to conduct case studies to investigate the influence of concrete permeability, tensile strength of concrete, relative humidity in concrete, and heating rate on fire-induced spalling in concrete members. Through these case studies, it is shown that permeability, tensile strength of concrete, and heating rate have a significant influence on fire-induced spalling in concrete. It is also shown that relative humidity has a marginal influence on fire-induced spalling in concrete.  相似文献   

11.
《Fire Safety Journal》1996,27(1):23-35
A model was developed previously for calculating combined buoyancy- and pressure-driven (i.e. forced) flow through a shallow, circular, horizontal vent where the vent-connected spaces are filled with fluids of different density in an unstable configuration (density of the top fluid is larger than that of the bottom). In this paper the model is summarized and then applied to the problem of steady burning in a ceiling-vented enclosure where normal atmospheric conditions characterize the upper-space environment. Such fire scenarios are seen to involve a zero to relatively moderate cross-vent pressure difference and bidirectional exchange flow between the enclosure and the upper space. A solution to the problem leads to a general result that relates the rate of energy release of the fire to the area of the vent and the temperature and oxygen concentration of the upper portion of the enclosure environment. This result is seen to be consistent with previously published data from experiments involving ceiling-vented fire scenarios.  相似文献   

12.
A number of disastrous incidents have indicated that extreme fires can act as a trigger event to initiate the progressive collapse of reinforced concrete (RC) structures. Hence, research on progressive collapse risks of RC structures under extreme fires is most important. However, limited studies have been undertaken in the fire-induced progressive collapse of tall and super-tall RC buildings. Hence, a high-performance finite element model was developed for this study to simulate the mechanical behavior of RC members in fire-induced progressive collapse. Fiber beam and multi-layer shell elements were used, in conjunction with appropriate material constitutive laws and elemental failure criteria under high temperature conditions. Extreme fire scenarios were also considered, based on the actual fire-induced progressive collapse events of the WTC towers and the Windsor Tower. The simulation results indicated that a progressive collapse of a super-tall building was triggered by the flexural failure of the peripheral columns, approximately 7 h after being exposed to fire. The bending deformations of the peripheral columns increased significantly, due to the outward thermal expansion of the upper floors and the inward contraction of the lower floors, a result of the fire-induced damage. The results also revealed that, when multiple stories are subjected to fire, the internal forces in the components are redistributed in the horizontal and vertical directions by way of the Vierendeel truss mechanism, leading to a maximum increase (of approximately 100%) of the axial forces in the columns. The present work identified the mechanisms of the fire-induced progressive collapse of a typical RC super-tall building, and provided an effective analysis framework for further research on the fire safety of tall and super-tall RC buildings.  相似文献   

13.
以住宅建筑火灾安全为研究背景,根据多室实体住宅建筑模型室内火灾升温及高温烟气流动影响的试验结果,重点讨论了起火房间尺寸、门洞尺寸及枢纽空间等3个主要空间构造因素对室内高温烟气流动影响。以质量守恒等相关热力学和流体力学基本概念建立了住宅空间单室尺寸与高温烟气分布的几何关系模型;利用动量守恒控制体法建立了开敞空间的开口尺寸与烟气扩散的关系模型。分析表明,住宅建筑火灾安全应充分考虑空间构造形式的影响;通过对烟气流动模式的独立房间尺寸设计和房间连通形式设计,可以有效地控制室内温度分布和烟气流动路径。  相似文献   

14.
分析青海某庭院式酒店中庭区域的烟气蔓延,通过模拟得到排烟口高度处烟气层内热流、质量流、体积流随时间变化的情况,分析建筑自然排烟系统的有效性,并对比排烟口布置位置对排烟效果的影响。通过计算得出排烟窗面积为内庭院面积的10%时能够保障建筑的消防安全。在4.0 MW的火源功率下,火源稳定之后150s左右烟气层稳定在30~32m高度处;自然排烟口位于庭院中心处的排烟效果优于排烟口位于四周。  相似文献   

15.
The smoke filling process for the three types of atrium spaces commonly built in Hong Kong are simulated using the two types of deterministic fire model: zone models and field models. The zone models used are the FIRST, CFAST, and CCFM.VENTS models developed at the Building and Fire Research Laboratories, NIST, USA and the NBTC one-room model of FIRECALC developed at CSIRO, Australia. The field model is a self-developed fire field model based on computational fluid dynamics theories. The results predicted by the two approaches are very similar. Simulation using a field model requires much more computing time compared with the use of a zone model, but it can give more detailed information on the fire-induced flow and temperature fields.  相似文献   

16.
In tunnels or long corridors, the combustion products of the fire are confined to spread in one or two directions, forming a ceiling-jet flow. For safety assessment and emergency treatment, it is important to investigate and understand the behavior of the ceiling-jet flow. In this paper, a simple model has been presented, in terms of Richardson number and non-dimensional ceiling-jet thickness, to predict the temperature and the velocity of fire-induced ceiling-jet in a rectangular corridor. Besides, the location of hydraulic jump, occurring in ceiling-jet flow, has been estimated theoretically. In order to validate the theoretical predictions, a series of reduced-scale fire experiments were conducted in a 5 m long corridor. The predicted results, concerning non-dimensional excess temperature, agree favorably with experimental data in different fuels and heat release rates of the fire tests. Finally, the scaling issue has also been discussed and validated.  相似文献   

17.
The current investigation examines suitability of the hydraulic analog for analysis of fire-induced dispersion within a complex enclosure. This analog has been implemented using salt-water modeling and planar laser induced fluorescence (PLIF) diagnostics providing quantitative visualization of simulated fire-induced flows. The non-intrusive PLIF diagnostics are used to temporally and spatially characterize dispersion from a buoyant source within a 1/7th scale room–corridor–room enclosure. This configuration is geometrically similar to a full-scale fire test facility, where local fire conditions were characterized near five ionization type smoke detectors placed throughout the enclosure. The full-scale fire and salt-water model results were scaled according to the dimensionless fundamental equations that govern source dispersion.An evaluation of the local conditions and dispersive event times for both the systems was used to explore the ability of the hydraulic analog to predict smoke detector response times. The dispersive event (front arrival) times predicted by the salt-water model, which represents a necessary event for detector activation, were in excellent agreement with the fire test data. A methodology using these front arrival times along with local conditions at the detector location is introduced in this paper. However, the complex nature of detector response and fidelity limitations of the analog make precise predictions of detector response time challenging. The predicted dimensionless response times were within 25% for all detector locations, with the exception of the first-room ceiling detector location. For this latter, a shorter dimensionless response time by less than 40% of that in the actual fire was predicted.  相似文献   

18.
This work describes an experimental study of the flow through a horizontal opening (also referred to as a vent), applicable to specific situations typically encountered in nuclear installations. The configuration consisted of two rooms, which were mechanically ventilated and connected to each other by a horizontal opening, the fire being located in the lower room. The flow was governed by buoyancy due to the heat release from the fire, inertia resulting from the mechanical ventilation, and local momentum from the ceiling jet. Two flow regimes (bi-directional and uni-directional) were encountered depending on the fire power and the ventilation set-up. This study presents 17 large-scale fire tests, investigating the behaviour of the flow at the horizontal opening according to several fire scenario parameters: the fire heat release rate, the fire location, the ventilation configuration and the ventilation flow rate. This range of parameters enabled us to focus on different flow regimes, from pure natural convection (bi-directional) to forced convection (uni-directional). The new set of data obtained, based on detailed flow measurements, offers new insights for understanding the flow and developing sub-models to be used in zone codes.  相似文献   

19.
This paper challenges the currently assumed linear relationship between doorway width and achievable flow. The current view is seen as a simplification that may lead to an overly optimistic view of the achievable flow rates. Analyzed data are presented in order to demonstrate the impact that the actual use of the doorway and its design can have upon the flow rate generated. These data are then supported by the use of numerical simulations to demonstrate the impact that this overestimation can have upon the design process. It is contended that the specific flow rate assumed for a doorway should take into consideration not only its width, but also the design of the doorway (i.e., the opening and closing mechanism) and how evacuees behave in response to it. The issues raised have implications for the governing codes/regulations, engineering guidance and on the development of future computational egress models.  相似文献   

20.
This paper presents a comparison of fire field model predictions with experiment for the case of a fire within a compartment which is vented (buoyancydriven) to the outside by a single horizontal ceiling vent. Unlike previous work, the mathematical model does not employ a mixing ratio to represent vent temperatures but allows the model to predict vent temperatures a priori. The experiment suggests that the flow through the vent produces oscillatory behaviour in vent temperatures with puffs of smoke emerging from the fire compartment. This type of flow is also predicted by the fire field model. While the numerical predictions are in good qualitative agreement with observations, they overpredict the amplitudes of the temperature oscillations within the vent and also the compartment temperatures. The discrepancies are thought to be due to three-dimensional effects not accounted for in this model as well as using standard ‘practices’ normally used by the community with regards to discretization and turbulence models. Furthermore, it is important to note that the use of the turbulence model in a transient mode, as is used here, may have a significant effect on the results. The numerical results also suggest that a linear relationship exists between the frequency of vent temperature oscillation (n) and the heat release rate ( ) of the type , similar to that observed for compartments with two horizontal vents. This relationship is predicted to occur only for heat release rates below a critical value. Furthermore, the vent discharge coefficient is found to vary in an oscillatory fashion with a mean value of 0.58. Below the critical heat release rate the mean discharge coefficient is found to be insensitive to fire size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号