首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We assessed the effectiveness of multiple hydrologic restoration scenarios for Lake Urmia, as well as the variation of its salinity regime under no intervention, using a 2D shallow water model. Tested scenarios, proposed by Urmia Lake Restoration Program Committee, include: Preservation of current lake status (no intervention), complete closing of Shahid Kalantari causeway, dyke construction in the southern part of Lake Urmia, water transfer from Zarrinehrood River to Siminehrood River and reduction of agricultural water consumption by best agricultural practices. Results indicate that neither the closure of the causeway nor the construction of the southern dyke would significantly improve lake conditions when compared to preservation of current lake status. The water transfer alternative doesn’t seem to have any effect on the current lake conditions either. However, the reduction on water diversions by improving agricultural practices in the lake's basin leads to a partial restoration of the lake in terms of water level, surface area and volume. If current conditions persist, salinity in the northern part of Lake Urmia will reach supersaturation levels (340?g/L), generating further salt deposits.  相似文献   

2.
This study presents a lake bed elevation model of Lake Urmia. In the course of model generation, a time series of the extent of the lake surface was derived from 129 satellite images with different acquisition dates based on the Landsat sensors Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI). Due to the rapid shrinking of the lake during the last two decades, lake surface areas ranging from 890 km2 to 6125 km2 could be covered. The water edge of the various lake extents was then linked to the observed water level on the day of the satellite image acquisition. The resulting contour lines, covering water levels between 1270.04 m and 1278.42 m a.s.l. and thus representing the lakebed morphology in its shallow parts, were merged with existing data (deeper parts) and interpolated to generate a lake bed elevation model. Finally, Lake Urmia’s Level-Area-Volume relationships were derived from the lake bed elevation model and compared to bathymetric data previously published.  相似文献   

3.
This study aims to analyze the environmental and economic impacts of land use change and water abstraction in the Zarrineh River basin, which is Lake Urmia’s main inflow source in the north-west of Iran. The Soil & Water Assessment Tool (SWAT) is used to model water quantity and quality in the basin. Environmental Kuznets Curves (EKC) are used to assess the relationship between environmental degradation and the development of the agricultural sector. Two scenarios were employed to identify the effects of dam construction and land use change on stream flow, evapotranspiration, groundwater recharge and nitrate loads in the area. The SWAT model showed a satisfactory to very good performance for monthly stream flow at most of the gauges in calibration and validation periods as well as a reasonable performance for nitrate loads. The estimated EKC indicates that the environmental degradation in the inverted U-shape that has passed its peak and the rate of degradation has decreased. Based on the scenarios, the dam has a strong impact on nitrate loads in the basin and water inflow into Lake Urmia. Results verify that human influences have had negative impacts on the Zarrineh River basin. In particular, the extensive development of the agricultural sector has not only drastically reduced the inflow of water to Lake Urmia accelerating the drying up of the lake, but it has also increased nitrate loads. Therefore, it can be recommended to take counter measures within the catchment area to improve the ecological status of Lake Urmia.  相似文献   

4.
Investigating the dynamic evolution of storage volume and salinity of Lake Urmia (LU), which is crucial to present more reliable estimations of water balance components, needs to be furthur studied. We aimed to fill this gap by developing a coupled lumped mathematical model that considered the two-way effect of salt and water balance components on each other. Through the coupled water and salt balance model, salt precipitation and dissolution components were incorporated, and vaporation was calculated dynamically based on the lake’s salinity. The final model was then used as a tool to estimate the groundwater flux. Results indicated that during the lake shrinkage period (2009–2015), substantial salt precipitation with an average rate of 6.79 g/100 g/year (6.79 g of salt per 100 g water per year) occurred. In this period, the lake’s salinity increased to more than 450 g/l, and a negative trend of −0.200 km3/year in evaporation was detected. From 2016 to 2019, LU’s water level rose, and although great salt dissolution with an average rate of 4.27 g/100 g/year occurred, the lake’s salinity decreased. In 2019, with the least lake's salinity values (annual average of 266.1 g/l), the evaporation rate was 1.45 times greater than the average evaporation rate through the rest of the simulation period. While LU’s connection with groundwater resources varied temporally, the average groundwater flux (-0.203 km3/year) was higher than it could be neglected. Results of this study are expected to enhance the understanding of LU crisis and to improve the plan to prevent further shrinkage of the lake.  相似文献   

5.
Environmental impacts of desalination on the ecology of Lake Urmia   总被引:1,自引:0,他引:1  
Lake Urmia, the second largest hypersaline lake by area in the world, has fluctuated in salinity over time, but in recent years, it has reached a maximum of 340 g/L. The lake is the main habitat for the endemic Iranian brine shrimp, Artemia urmiana, and is a protected aquatic environment. Efforts have been made by the Iranian government to enhance the diversity of its wildlife. One approach has been to look for a method to reduce the salt content of the lake. We investigate the feasibility of this by first considering the water chemistry of Lake Urmia and then the various technologies used to extract salt from marine and brackish waters. Average concentrations of Na, Mg, K, Ca, Cl, SO4, and HCO3 were 125 g/L, 11.3 g/L, 2.63 g/L, 0.55 g/L, 216 g/L, 22.4 g/L, and 1.38 g/L, respectively, and cations and anions were balanced, However, Lake Urmia waters have a ‘very high’ salinity hazard and a high sodium adsorption ratio (SAR). Moreover, the saturation index (SI) for each of the major cations was greater than zero, indicating that the water in Lake Urmia is supersaturated, and precipitation is likely. The extraction of available salts from the lake for the use in petrochemical industries is economically feasible. However, technologies based on removing salts by distillation or reverse osmosis and then using this fresh water to dilute lake salinity are problematic. A better strategy would be better to allow more fresh water to reach the lake rather than creating fresh water through reverse osmosis and distillations processes. While concerns have been raised about the salinity tolerance of A.urmiana, it has successfully tolerated various salinity ranges from 166 to 340 g/L, and so the species is not threatened, unless the lake desiccates. Because the lake is saturated with salts, it seems unlikely that salinity could increase much higher.  相似文献   

6.
Urmia Lake in Iran is the second largest saline lake in the world. This ecosystem is the home for different species. Due to various socio-economical and ecological criteria, Urmia Lake has important role in the Northwestern part of the country but it has faced many problems in recent years. Because of droughts, overuse of surface water resources and dam constructions, water level has decreased in such a way that one quarter of the lake has changed to saline area in the last 10 years. The purpose of this research is to determine the main factors which reduce the lake’s water level. To this end, a simulation model, based on system dynamics method, is developed for the Urmia Lake basin to estimate the lake’s level. After successful verification of the model, results show that (among the proposed factors) changes in inflows due to the climate change and overuse of surface water resources is the main factor for 65% of the effect, constructing four dams is responsible for 25% of the problem, and less precipitation on lake has 10% effect on decreasing the lake’s level in the recent years. In the future, the model also can be used by managers as a decision support system to find the effects of building new dams or other infrastructures.  相似文献   

7.
Lake Urmia is the second-largest hypersaline lake in the world. There has been a drastic water level drop of 7.2 m from 1995 to 2016. Beginning in October 2013, the Lake Urmia Restoration Plan (LURP) launched a 10-year program. An increase in water level and a relative improvement in Lake Urmia condition has been observed since 2017. It is an undecided and controversial issue whether the recent positive trend of Lake Urmia has been due to the LURP activities or it is a natural contribution of climate factors variations. To shed some light on this issue, we examine three other lakes, adjacent to the Lake Urmia basin, with similar rainfall variability to investigate their status during the same period. Van (Turkey), Mosul, and Tharthar (both in Iraq), are evaluated as well as Lake Urmia. Three decades of remotely sensed data including precipitation (P), water level (WL), and lake extent (A) were considered for the mentioned lakes. A significant correlation was observed between standardized WL-P, and A-P over the long-term period, especially for the recent three years (R2 = 0.63–0.87). We show that the cumulative precipitation in the antecedent months played a major role in the improvement of these lakes' situation but with different time lags (up to 6 months for Van and Mosul lakes and up to 36 months for Lake Urmia and Tharthar lake). These findings could inform the planners of LURP to adopt strategies for achieving a sustainable state of Lake Urmia based on a more realistic outlook.  相似文献   

8.
The water level of Urmia Lake, the largest inland lake in Iran with maximum water surface area of about 6000 km2, has been shrinking for the last two decades. Although a number of study have been performed to determine drought condition and coastline changes of Urmia Lake, there has not been a detailed study to distinguish anthropogenic effects from climate impacts on the drying of Urmia Lake. In this study, water budget of Urmia Lake and the intensity of drought in the basin were analyzed in the period from 1985 to 2010 and a new hypothesis is proposed to quantify anthropogenic and climate impacts in reducing the volume of Urmia Lake. The results of this study indicate that human impacts on the Lake and its basin are more important than climate factors. Though previous studies assumed that ground water output from Urmia Lake is negligible, the results of this study show the presence of significant groundwater seepage from Urmia Lake. Major changes in the variables that reduced the water level of Urmia Lake were observed since 1998. Anthropogenic impacts and climate factors have roughly 80% and 20% effects on the drying up of Urmia Lake, respectively. Hence, the first step to recover Urmia Lake could be the revision of management surface water, operation of dams and groundwater resources. The second step could be the review and classification of agricultural products grown in the region in terms of water consumption and teach local people the best practice methods for irrigation.  相似文献   

9.
Urmia Lake in the northwest of Iran is the second largest hyper-saline lake worldwide. During the past two decades, a significant water level decline has occurred in the lake. The existing estimations for the lake water balance are widely variable because the lake bathymetry is unknown. The main focus of this study is to extract the volume–area–elevation (V–A–L) characteristics of Urmia Lake utilizing remote sensing data and analytical models. V–A–L equations of the lake were determined using radar altimetry data and their concurrent satellite-derived surface data. Next, two approximate models, a power model (PM) and a truncated pyramid model (TPM), were parameterized for Urmia Lake and checked for accuracy. Results revealed that in comparison with the satellite-derived reference volume–elevation equation, the PM slightly over-predicts the volume of Urmia Lake while the TPM under-estimates the lake storage. Variations of the lake area and volume between 1965 and 2011 were examined using the developed V–A–L equations. Results indicated that the lake area and volume have declined from the historical maximum values by 2200 km2 and 33 km3, respectively. To restore Urmia Lake to a level to maintain ecological benefits, 13.2 km3 of water is required. This study demonstrates the use of remote sensing data of different types to derive V–A–L equations of lakes. Substituting satellite-derived V–A–L equations for common empirical formulas leads to more accurate estimations of a lake water balance, which in turn, provides insight to water managers for properly assessing and allocating water resources to downstream ecosystems.  相似文献   

10.
长距离调水对沿线及受纳水体水环境的影响   总被引:1,自引:0,他引:1  
以艾比湖生态保护工程—从南疆喀什河经精河引水入艾比湖为背景,进行调水工程对受水区高盐度湖泊艾比湖水环境影响的研究。通过建立一维水质模型和二维湖泊盐度预测模型,分别研究调出河道、输水沿线河道在调水前后水质变化情况以及高盐度受水湖泊盐度随引水延长的变化规律和规划水平年25%保证率下入湖淡水对盐分的稀释程度及稀释度空间分布规律,并进一步分析平、枯水年水文情势下调水对盐度的影响。结果表明:调水工程实施后,调出河道和输水沿线河道原有的水质类别均未改变,河流水质功能均未下降;引水后3d内,入湖口附近水域盐度有较大变化,3d后,盐度变化不明显;引入淡水对湖泊盐分稀释影响较小,稀释度为20%、10%的水域均在入湖口附近,影响范围不大,平、枯水年水文情势下,调水对湖泊盐分的稀释影响不明显。  相似文献   

11.
A complete annual cycle of the dynamics of fine-grained sediment supplied by the Omo and smaller rivers is simulated for Lake Turkana, one of the world’s large lakes, with the hydrodynamic, wave and sediment transport model Delft3D. The model is forced with river liquid and solid discharge and wind data in order to simulate cohesive sediment transport and resuspension. It simulates stratification due to salinity, wave generation and dissipation, and sediment advection and resuspension by waves and currents, with multiple cohesive sediment fractions. A comparison of the simulation results with remotely-sensed imagery and with available in-situ sediment deposition rates validates the model. By devising simulation scenarios in which certain processes were switched on or off, we investigated the contribution of waves, wind-induced surface and bottom currents, salinity-induced stratification and river jet, in resuspending and transporting fine sediments in the lake basin. With only the wind or river influence, most of the sediment deposition occurs in the first 10 km off the Omo River mouth and at a depth < 10 m. When waves are switched on, increased bed shear stresses resuspend most of the fine sediments, that are then deposited further and deeper in the first 30 km, in water depths > 30 m. This study sheds new light on sediment transport in Lake Turkana and in great lakes in general, favouring the view that wind-waves can be the main agent that transports sediment away from river mouths and to deeper areas, as opposed to river-plume or gravity-driven transport.  相似文献   

12.
Water conflicts appear when there are insufficient and less available water resources than water demands claimed by different agents. In this study, a new bankruptcy approach is investigated to resolve water conflicts in the Zarrinehroud River Basin, the largest and most important sub-basin of Lake Urmia’s Basin in the northwest of Iran. The new bankruptcy method is compared with the proportional rule (PRO) and another alternative based on the cessation of irrigated agriculture in the region proposed to supply and save environmentally in danger Lake Urmia. Four scenarios consisting of the current situation, optimistic, average and pessimistic scenarios regarding the future of water resources of the basin and agricultural developments were considered. According to the results, both bankruptcy rules helped Lake Urmia to receive more water, but neither could utterly overcome the water shortage of the Lake, so can be used as supplementary actions alongside other solutions. The cessation of irrigated agriculture throughout the basin overcame the average annual shortage of Lake Urmia in the first and second scenarios equal to 137 and 148 million cubic meters respectively. It showed disability to fully supply the lake in the third and fourth scenarios. These three methods must be combined with a social-economic policy like the purchase of decreased water allocations to farmers to be socially acceptable.  相似文献   

13.
Proxy variables from palaeolimnological studies of lakes in the Prairie Pothole Region of North America have been used to infer large oscillations during the late Holocene between longer periods of high‐salinity–dry conditions and shorter periods of low‐salinity–wet conditions producing a normative pattern marked by the absence of hydrological stability. Studies of the historical rise in lake level at Devils Lake have identified 1980 as a transition point between two such hydroclimatic modes. This study uses multiple datasets to characterize the mean hydroclimatological and hydrological conditions of these two climatic modes. Mode 1 is a cool and dry phase, and mode 2 is a warmer and wetter phase. Precipitation onto the lake increased by 24% from mode 1 to mode 2. This small, but sustained, increase produced significant changes in the mean hydroclimatic and hydrological states for the basin, including a 383% increase in surface run‐off to the lake, and a 282% increase in the basin run‐off ratio. Devils Lake Basin is located along a hydrotone (region of strong hydroclimatic gradients) where small changes in hydrological drivers are amplified into large changes in regional moisture. The effects of the fluctuating climatic modes and strong hydroclimatic gradients are probably further amplified by the unique fill–spill hydrology of the northern glaciated plains, which can result in nonlinear precipitation–run‐off relationships. This natural pattern of extreme hydrological variations for Devils Lake produces enormous challenges for lake management.  相似文献   

14.
Coastal Wetlands (CWs) provide critical ecosystem services that maintain biogeochemical processes and habitats in the coastal zone of the Great Lakes. When nutrient-laden surface waters flow into CWs from their watersheds, internal physical, chemical, and biological processes can alter the final nutrient loadings to the lake. However, CWs can periodically be inundated with lake water from seiche events, and little is known about the impacts of seiches on nutrient processing and loadings from CWs. To evaluate the influence of lake seiches on CW phosphorous-loading dynamics, we built a multi group structural equation model (SEM) using climatic and wave data, and interannual (2009–2018) estimated sediment and phosphorous loadings from three CWs on the north-shore of central Lake Ontario (Rouge Marsh, Duffin’s Marsh, and Carruthers Marsh). Wind speeds, lake levels, and an increased peak period of wave spectra were significant explanatory variables of seiche events (p-value < 0.001). We identified that seiche events caused significant sediment resuspension (p-value < 0.001) in CWs, which contributed to a significant increase of phosphorous loading to the coastal zone of Lake Ontario (p-value < 0.001). Our results indicate that lake-seiche events can influence CW phosphorous-loadings to Lake Ontario, and should be considered when modelling water quality in the nearshore zone.  相似文献   

15.
Urmia Lake as a most vital water bodies in Iran, has been shrinking since the late twentieth century and its area has dramatically decreased. To develop and apply any plans to survive the lake, qualitative and quantitative analysis and any modeling, deriving physical information such as volume, area and their changes are very crucial. The objectives of this study were therefore, intended firstly, to study the bathymetry of Urmia Lake with a more satisfactory approach using Landsat- LDCM satellite image and in situ measurement data. The polynomial model was developed to predict the water depth in Urmia Lake area. This model was developed with the input series of reflectance values from blue, green, red and NIR bands in the Landsat- LDCM satellite imagery for Urmia Lake taken on 12 April 2013 of the sampling sites from actual depth measured were taken on the same date. Also, using a large archive of Landsat imagery (TM, ETM+ and LDCM), a counter of equivalent elevation were established for deriving the bathymetry of desiccated areas by mapping the edges of the lake and finally assembled with bathymetry derived from polynomial model. In-situ depth measurements were used to evaluate resultant derived bathymetric map. This comparison shows reasonable agreement between the Landsat-derived depths and those measured in the field with RMSE of 0.27 cm and R2 = 0.91. The maximum and mean depths measured were 4.9 and 11 m respectively. The maximum depth measured was located at the upper part of the lake. As well as, developed multi-regression equation used for deriving another bathymetry map using Landsat- LDCM satellite image taken on Sep. 2015 for salt deposition monitoring. Results indicates that about 64 cm salt deposition has occurred during the last two years. Secondly, to make stage curves of lake, multi-temporal changes of water body have been derived from Landsat, MODIS and AVHRR satellite images sets since 1972. In this regard, the area of Urmia Lake at different level was estimated base on object oriented and pixel base classification using 78 satellite images. Finally, stage curve (volume- area- level relations) was derived from bathymetry map.  相似文献   

16.
A distinctive hydrological feature of the Lake Athabasca–Peace–Athabasca Delta (LA‐PAD) complex is that flow in channels that drain the system reverses direction when stage on the Peace River exceeds that for the central lakes. This river's hydrology has experienced natural and human induced changes since 1968. This study investigates the importance of spring break‐up and open‐water induced outflow obstruction and reverse flow contributions to annual lake level maxima under natural (1960–1967), regulated (1976–2004) and naturalized (1976–1996) flow regimes. Obstructed and reverse flow events during spring break‐up were common prior to and following flow regulation, suggesting that natural climatic variability in source areas below the W.A.C. Bennett Dam exerted a strong influence on their occurrence. Antecedent hydrological conditions, such as fall freeze‐up lake level, break‐up magnitude, peak spring flow and initial open‐water lake level were significantly associated with annual lake level maxima. During the summer period, lake level was linked to sustained high flows on the Peace River. The river obstructed outflow and contributed reverse flow to the LA‐PAD in each year prior to 1968. Following regulation, however, more than half the years did not experience any open‐water obstruction and/or reversal, and those that did were characterized by smaller events. The average estimated duration of obstruction was more than two weeks shorter and reverse flow volume was reduced by ~90% under a regulated regime compared to a simulated naturalized flow regime. This implied a lowered potential for lateral lake expansion into the delta floodplain in some years. The regulated hydrology could produce large stormflow and high lake levels, but only under extreme climatic events in areas below the dam and/or human‐induced alterations to normal reservoir operation. Copyright © 2009 Crown in the right of Canada and John Wiley & Sons, Ltd.  相似文献   

17.
Water Resources Management - The environmental water demand of the Mahabad River in the Urmia Lake basin in Iran was first estimated, using the flow duration curve shifting method (FDC Shifting) in...  相似文献   

18.
Liu  Bojun  Xia  Jun  Zhu  Feilin  Quan  Jin  Wang  Hao 《Water Resources Management》2021,35(14):4961-4976

Lake water resources operation and water quality management come up with higher challenges due to climate change. The frequency and intensity of extreme hydrological events are increasing under global warming, which may directly lead to more uncertainty and complexity for hydrodynamic and water-quality conditions in large shallow lake. However, studies about effects of climate change on lake hydrodynamic and water-quality conditions are not enough. Thus, a coupled model is es-tablished to investigate the potential responses of lake water level, flow field and pollutant migra-tion to the changing climatic factors. The results imply that water flow capacity and self-purification in the Hongze Lake can be improved by west, northwest, north, south and southeast winds indi-cating wind filed change has a great effect on the hydrodynamic and water-quality conditions in large shallow lake. It is further observed that both hydrodynamics and water quality are more sensitive to rainfall change than to temperature change; compared to the effect from temperature and rainfall, the effect from wind field appear to be more pronounced. Moreover, the results verify the feasibility of coupling basin hydrological model with lake hydrodynamic and water quality model. To the best of knowledge, the coupled model should not be used until independent calibra-tions and verifications for hydrodynamics and water quality modeling, the hydrological model and the coupled model.

  相似文献   

19.
The water level variations of the Lake Balkhash, the Kapshagay Reservoir and the Ili River and the linkage with salinity and biological conditions are investigated in this work using different techniques: satellite radar altimetry, in situ gauges, historical archives of fish population counting and field works. We show that it is possible now to monitor, over decades, in near real time, with high precision, the water level changes in the Lake Balkhash from satellite altimetry, over the reservoir and also along the Ili River. The vulnerability of the lake fauna and flora populations is enhanced by the morphometry of the lake: shallow and separation of the eastern basin from the western basin through the narrow Uzun‐Aral strait. Water policy of the Ili River also plays a fundamental role in the evolution of the Balkhash Lake. The Ili River that provides 80% of the surface water of the lake is a transboundary river. Development of intense irrigated agriculture in the upstream part of this river, located in the Chinese territory, could lead in the future to high hydrological stress in the downstream regions with potentially high damage in the delta and for fishery production. We show here the recent evolution of the Lake Balkhash basin from satellite data. Some interannual oscillation of 6–8 years over the last decade has been highlighted, with a water level of the lake still at a high value, but prediction on increasing irrigation is also highlighting the vulnerability of this lake. Linkage between water level change along the river and the downstream waters is also investigated. It shows that the role of the reservoir is not fundamental in the understanding of the Lake Balkhash water level changes which is in contrast highly correlated to upstream river level changes.  相似文献   

20.
Lake Erie has the longest history of colonization by both Dreissena polymorpha and Dreissena rostriformis bugensis in North America and is therefore optimal for the study of long-term dynamics of dreissenid species. In addition, the morphometry of Lake Erie basins varies dramatically from the shallow western to the deep eastern basin, making this waterbody a convenient model to investigate patterns of Dreissena distribution, as well as interspecies interactions among dreissenids. We compare our data on the distribution, density and wet biomass of both dreissenid species in Lake Erie collected in 2009 and 2011–2012 with previous data. We found that Dreissena spp. distribution in Lake Erie varied depending on the time since the initial invasion, collection depth, and lake basin. In 2009–2012, zebra mussels were smaller than in 1992 and were consistently smaller than quagga mussels. During 2009–2012, quagga mussels were found at all depths and in all basins, while zebra mussels were common in the western basin only, and in the central and eastern basins were limited to shallow depths, resulting in an almost complete replacement of D. polymorpha with D. rostriformis bugensis. In the shallowest western basin of Lake Erie, zebra mussels represented > 30% of the combined dreissenid density even after more than 20 years of coexistence, providing strong evidence that, even in lakes as large as Lake Erie (or at least its western basin), D. polymorpha may sustain a significant presence for decades without being displaced by quagga mussels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号