首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β-Carotene–FSS organic semiconductor/n-type Si structure has been characterized by current–voltage and capacitance–voltage methods. A deviation in IV characteristic of the diode is observed due to effect of series resistance and interfacial layer. Cheung's functions were used to calculate diode parameters. The ideality factor, series resistance and barrier height values of the diode are n = 1.77, Rs = 10.32 (10.39) kΩ and 0.78 eV. The obtained ideality factor suggests that Au/β-carotene–FSS/n-Si Schottky diode has a metal–SiO2 oxide layer plus organic layer–semiconductor (MIOS) configuration. The capacitance–voltage characterizations of Au/β-carotene–FSS/n-Si diode at different temperatures were performed. The capacitance of the diode changes with temperature. The barrier height and ideality factor obtained from CV curves are 0.67 eV and 1.68. The interface density properties of the diode are analyzed and the shape of the density distribution of the interface states is in the range of Ec −0.49 to −0.62 eV. It is evaluated that the FSS organic layer controls electrical charge transport properties of Au/β-carotene/n-Si diode by excluding effects of the β-carotene and SiO2 residual oxides on the hybrid diode.  相似文献   

2.
The structural and optical properties of CdS films deposited by evaporation were investigated. X-ray diffraction study showed that CdS films were polycrystalline in nature with zinc-blende structure and a strong (1 1 1) texture. The study has been made on the behavior of Cu/n-CdS thin film junction on SnO2 coated glass substrate grown using thermal evaporation method. The forward bias current-voltage (I-V) characteristics of Cu/CdS/SnO2/In-Ga structures have been investigated in the temperature range of 130-325 K. The semi-logarithmic lnI-V characteristics based on the Thermionic emission (TE) mechanism showed a decrease in the ideality factor (n) and an increase in the zero-bias barrier height (ΦBo) with the increasing temperature. The values of n and ΦBo change from 8.98 and 0.29 eV (at 130 K) to 3.42 and 0.72 eV (at 325 K), respectively. The conventional Richardson plot of the ln(Io/T2) vs q/kT shows nonlinear behavior. The forward bias current I is found to be proportional to Io(T)exp(AV), where A is the slope of ln(I)-V plot and almost independent of the applied bias voltage and temperature, and Io(T) is relatively a weak function of temperature. These results indicate that the mechanism of charge transport in the SnO2/CdS/Cu structure in the whole temperature range is performed by tunneling among interface states/traps or dislocations intersecting the space-charge region. In addition, voltage dependent values of resistance (Ri) were obtained from forward and reverse bias I-V characteristics by using Ohm's law for each temperature level.  相似文献   

3.
The current-voltage (I-V) measurements were performed in the temperature range (200-300 K) on Al/DNA/p-Si Schottky barrier type diodes. The Schottky diode shows non-ideal I-V behaviour with ideality factors n equal to 1.34 ± 0.02 and 1.70 ± 0.02 at 300 K and 200 K, respectively, and is thought to have a metal-interface layer-semiconductor (MIS) configuration. The zero-bias barrier height Φb determined from the I-V measurements was 0.75 ± 0.01 eV at 300 K and decreases to 0.61 ± 0.01 eV at 200 K. The forward voltage-temperature (VF-T) characteristics were obtained from the I-V measurements in the temperature range 200-300 K at different activation currents (IF) in the range 20 nA-6 μA. The VF-T characteristics were linear for three activation currents in the diode. From the VF-T characteristics at 20 nA, 100 nA and 6 μA, the values of the temperature coefficients of the forward bias voltage (dVF/dT) for the diode were determined as −2.30 mV K−1, −2.60 mV K−1 and −3.26 mV K−1 with a standard error of 0.05 mV K−1, respectively.  相似文献   

4.
In the present work, we have investigated the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of Au/SiO2/n-GaN metal-insulator-semiconductor (MIS) Schottky diode and compared with Au/n-GaN metal-semiconductor (MS) Schottky diode. Calculations showed that the Schottky barrier height and ideality factor of the MS Schottky diode is 0.79 eV (I-V), 0.87 eV (C-V) and 1.45, respectively. It is observed that the Schottky barrier height increases to 0.86 eV (I-V), 0.99 eV (C-V) and ideality factor deceases to 1.3 for MIS diode. For the MS diode, the calculated doping concentration is 4.17 × 1017 cm−3. However, in the case of the MIS Schottky diode, the decrease in doping concentration is observed and the respective value is 2.08 × 1017 cm−3. The obtained carrier concentration of the MIS diode is reduced about 50% when compared to the MS diode. The interface state density as determined by Terman's method is found to be 3.79 × 1012 and 3.41 × 1010 cm−2 eV−1 for the MS and MIS Schottky diodes, respectively. The calculated interface densities are 2.47 × 1011 cm−2 eV−1, 3.35 × 1011 cm−2 eV−1 and 3.5 × 1011 cm−2 eV−1 for the sweep rates of 300, 450 and 600 mV/s from MOS C-V measurements for the MIS Schottky diode. The interface state density calculated from Terman's method is found to be increased with sweep rate. From the C-V measurement, it is noted that the decrease in the carrier concentration in MIS diodes as compared to MS diode may be due to the presence of oxide interfacial layer. DLTS measurements have also been performed on MIS Schottky diode and discussed.  相似文献   

5.
We study how tris(8-hydroxyquinolinato) aluminum organic semiconductor layer at p-silicon/Al interface can affect electrical transport across this interface. Al/Alq3/p-Si device shows a good rectifying behavior with an ideality factor value of 1.95. The barrier height values obtained from IV and Norde method were found to be 0.84 and 0.82 eV, respectively. This indicates that the barrier height obtained from Norde method is lower than that of barrier height value obtained from IV due to the series resistance effect. The modification of the interfacial potential barrier for Al/p-Si diode was achieved using an interlayer of the Alq3 organic semiconductor and this is ascribed to the fact that the Alq3 interlayer increases the effective barrier height, because of the interface dipole induced by passivation of the organic layer. The frequency dispersion in capacitance and conductance can be interpreted in terms of the series resistance and interface state density values. The series resistance of the diode was changed from 9 kΩ to 1 kΩ with increasing frequency. The distribution profile of RsV gives a peak at low frequencies in the depletion region and disappears with increasing frequency.  相似文献   

6.
《Synthetic Metals》2007,157(13-15):540-545
The Al/tetraamide-I/p-Si Schottky barrier diode (SBD) has been prepared by adding a solution of a novel nonpolymeric organic compound chiral macrocylic tetraamide-I in chloroform on top of a p-Si substrate and then evaporating the solvent. It has been seen that the forward-bias current–voltage (IV) characteristics of Al/tetraamide-I/p-Si SBD with a barrier height value of 0.75 eV and an ideality factor value of 1.77 showed rectifying behaviour. The energy distribution of the interface state density determined from IV characteristics increases exponentially with bias from 5.81 × 1012 cm−2 eV−1 at (0.59-Ev) eV to 1.02 × 1013 cm−2 eV−1 at (0.40-Ev) eV. It has showed that space charge limited current (SCLC) and trap charge limited current (TCLC) are the dominant transport mechanisms at large forward-bias voltages.  相似文献   

7.
In this paper, the current–voltage (IV) characteristics of Sn/Rhodamine-101/p-Si/Al contacts have been measured at temperatures ranging from 80 to 400 K at 30 K intervals. The nonpolymeric organic compound Rhodamine-101 (Rh101) film on a p-type Si substrate has been formed by means of the evaporation process and the Sn/Rhodamine-101/Si contacts have been fabricated. The current–voltage characteristics of the diode show rectifying behaviour consistent with a potential barrier formed at the interface. The obtained IV barrier heights (Φb) were in the range of 0.208–0.940 eV with ideality factors (n) of 14.37–2.72. The high values of ideality factor (n) may be ascribed to decrease the exponentially increase rate in current due to space-charge injection into Rh101 thin film at higher voltage. Temperature dependence of the energy distribution of interface states density profile was determined from the forward bias IV characteristics. It is shown that organic semiconductor layer (Rhodamine-101) controls electrical charge transport properties of Sn/p-Si Schottky structure by excluding effects.  相似文献   

8.
The variations in the electrical properties of Cr Schottky contacts formed by electrodeposition technique on n-type Si substrate have been investigated as a function of temperature using current-voltage (I-V) and capacitance-voltage (C-V) measurements in the temperature range of 80-320 K by steps of 20 K. The basic diode parameters such as ideality factor (n) and barrier height (Φb) were consequently extracted from the electrical measurements. It has been seen that the ideality factor increased and the barrier height decreased with decreasing temperature, when the I-V characteristics were analyzed on the basis of the thermionic emission (TE) theory. The abnormal temperature dependence of the Φb and n and is explained by invoking two sets of Gaussian distribution of barrier heights at 320-200 K, and 180-80 K. The double Gaussian distribution analysis of the temperature-dependent I-V characteristics of the Cr/n-type Si Schottky contacts gave the mean barrier heights of 0.910 and 0.693 eV and standard deviations (σs) of 109 mV and 72 mV, respectively. Then, these values of the mean barrier height have been confirmed with the modified ln(I0/T2) − q2/2k2T2 versus 1/T plot which belongs the two temperature regions.  相似文献   

9.
A ZnO/p-InP heterojunction has been fabricated by dc sputtering of ZnO on p-InP. It has been observed that the device has a good rectification. The electrical properties of the device such as ideality factor, barrier height, series resistance have been calculated using its current-voltage (I-V) measurements between 300 and 380 K with 20 K intervals. The short current density (Jsc) and open circuit voltage (Voc) parameters have been determined between 40 and 100 mW/cm2. The photovoltaic parameters of the device have been also determined under 100 mW/cm2 and AM1.5 illumination condition.  相似文献   

10.
M. Campos  P.A.P. Nascente 《Synthetic Metals》2010,160(13-14):1513-1519
The electrical structure of the Al/Al2O3/PPy-NDSA/Au has been investigated by means of current–voltage (IV) and capacitance–voltage (CV) measurements, in a temperature range of 90–350 K. The forward CV measurements have been carried out in the range of frequency of 1 kHz to 20 MHz. The effects of series resistance, interfacial layer and interface states on IV and CV characteristics are investigated. At high current densities in the forward direction, the series resistance effect has been observed for voltages greater than 0.7 V. The analysis of IV characteristics based on the thermionic emission mechanism has been explained by the assumption of a Gaussian distribution of barrier heights, due to barrier height inhomogeneities that prevail at the interface. It has been observed that the forward CV plot exhibits a peak, whose position shifts towards lower voltages and that decreases with increasing frequency. The non-linearity of 1/C2 versus V plot at high frequency was explained with the assumption that only some of the interface states follow the applied ac signal. Surface analysis by X-ray photoelectron spectroscopy (XPS) was performed in order to evaluate the chemical states of the constituents of the Al/Al2O3/PPy-NDSA/Au sample.  相似文献   

11.
To lower the HOMO (highest occupied molecular orbital) energy level of polythieno[3,4-b]thiophene (∼−4.5 eV), a series of ester-functionalized polythieno[3,4-b]thiophene derivatives (P1P3) were designed and synthesized by Stille cross coupling reaction. The resulting copolymers exhibited broad and strong absorption bands from visible to near infrared region with low optical band gaps of 1.23–1.42 eV. Through cyclic voltammetry measurements, it was found that the HOMO energy levels of the copolymers gradually decreased with increasing the content of the thiophene-3,4-dicarboxylate moiety, i.e. −4.91 eV for P1, −5.00 eV for P2, and −5.11 eV for P3. Preliminary photovoltaic properties of the copolymers blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as electron acceptor were investigated. Among the three copolymers, P1 exhibited the best photovoltaic performance with an open circuit voltage (Voc) of 0.54 V, a short circuit current density (Isc) of 3.3 mA/cm2, a fill factor (FF) of 0.57, and a power conversion efficiency (PCE) of 1.02%. A high Voc up to 0.71 V was achieved in the solar cell based on a P3:PCBM blend.  相似文献   

12.
Heterojunction between polyaniline (PANI) and porous silicon (PS) was fabricated by making a layer of PANI on PS, using spin coating method. PS was fabricated by electrochemical etching process. PS was characterized by photoluminescence (PL), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) while the PANI was characterized by FTIR and absorption (UV–VIS) spectroscopy. Current–voltage and capacitance–voltage measurements were done to determine the electrical properties of the heterojunction structure. The ideality factor of the heterojunction was found to be 4.2, which was considered high due to large defect density at the interface. Built-in potential was measured by both IV and CV and was found to be Φb(IV) = 0.41 V and Φb(CV) = 0.28 V respectively. The discrepancy in the values of the built-in potential was discussed. Band discontinuity in conduction band and valence band were found to be 0.65 and 1.27 eV respectively. Solar response of the heterojunction was also observed at AM (air mass) 1.0 and it showed a promising behavior as a photovoltaic device.  相似文献   

13.
The Poly(4-vinyl phenol) insulator layer was grown by spin coating technique onto p-Si substrate. Diode ideality factor (n), insulator layer thickness (δ), space charge region width (WD), interface state density (Nss), series resistance (Rs), acceptor concentration (NA) of the Au/Poly(4-vinyl phenol)/p-Si structure have been extracted from the current–voltage (IV), frequency dependent capacitance–voltage (CV) and conductance–voltage (GV) measurements. It is pointed out that the interface states lead to deviation of the ideality factor value from 1 and frequency dispersion of the CV characteristics. Nss profiles as a function of (EssEv) obtained using IV and low frequency CV measurements are in good agreement. Nss values varying between 1012 and 1013 eV−1 cm−2 mean that Poly(4-vinyl phenol) is a candidate for insulator layer forming on Si as powerful as SiN4, SnO2, TiO2.  相似文献   

14.
The influence of thermal annealing at different fabrication stages on rubrene–C60 heterojunction organic solar cells is presented. Devices grown at room temperature showed s-shaped current density–voltage (JV) characteristic. A pre- or post-fabrication thermal treatment step is found effective in elimination of s-shaped JV. An exclusive gain in open-circuit voltage was measured when rubrene–C60 layer was fabricated at elevated substrate temperature of 80 °C. The results indicate that introduction of temperature at various stage of device fabrication allows selective control over organic layer growth and hence organic–organic interface formation. The 133 mV increase in open-circuit voltage in solar cells fabricated at substrate temperature is due to temperature induced molecular conformation change at the light in-coupling ITO/PEDOT interface.  相似文献   

15.
Au/3C-SiC/p-Si/Al Schottky barrier diode was prepared using atmospheric pressure chemical vapor deposition technique. The device parameters such as barrier height, ideality factor, and series resistance were calculated using current-voltage characteristics, and were found to be 0.44 eV, 1.55, and 1.02 × 104 Ω, respectively. The photocapacitive properties of the diode were studied under various illumination intensities. The transient photocapacitance measurements indicate that the capacitance of the Au/3C-SiC/p-Si/Al Schottky diode is very sensitive to illumination. The photocapacitance of the diode increases with increase in illumination intensity. The increase in photocapacitance with increase in illumination intensity suggests that these devices could be utilized as a photocapacitive sensor for optical sensors.  相似文献   

16.
The electrical properties of the (Na0.6Ag0.4)2PbP2O7 compound were studied using the complex impedance spectroscopy in the temperature range (502-667 K). Grain interior, grain boundary and electrode-material interface contributions to the electrical response are identified by the analysis of complex plan diagrams. The imaginary part of the modulus at several temperatures shows a double relaxation peaks, furthermore suggesting the presence of grains and grain boundaries in the sample. An analysis of the dielectric constants ?′, ?″ and loss tangent tan(δ) with frequency shows a distribution of relaxation times. The dc conductivity of the material is thermally activated with an activation energy about 0.8 eV which is in the vicinity of the that obtained from tan(δ) (E = 0.7 eV) and modulus (Em = 0.68 eV) studies.  相似文献   

17.
In this study, n-type hydrogenated amorphous silicon (a-Si:H) was fabricated on p-type crystalline silicon (c-Si) substrates to obtain heterojunction diodes. The amorphous films were obtained by the Plasma Enhanced Chemical Vapor Deposition (PECVD) technique. Temperature dependent current-voltage (I-V-T) measurements and investigation of the dc current injection mechanism of a-Si:H(n)/c-Si(p) device structure have been performed. The series resistance (4.6-8.2 Ω) values displayed nearly temperature independent behavior and the ideality factor varied between 2.7 and 1.6 in the temperature range 100-320 K. The forward bias I-V-T characteristics of c-Si/a-Si:H heterojunctions are found to behave like the Schottky junctions where carrier injection is especially influenced by the carrier generation-recombination in the junction interface formed on the amorphous side. The temperature dependent ideality factor behavior shows that tunneling enhanced recombination is valid rather than thermionic emission theory. In the frame of this model, characteristic tunneling energy and characteristic temperature are found to be 9 meV and 1900 K, respectively. It is concluded that fabricate n-type hydrogenated amorphous silicon is a preferable semiconductor material layer with low interface state density because the temperature dependent interface state density calculations give values of the order of 1014 eV−1 cm−2.  相似文献   

18.
In this study, the main electrical parameters, such as doping concentration (ND), barrier height (ΦCV), depletion layer width (WD), series resistance (Rs) and Fermi energy level (EF), of GaAs/AlxGa1−xAs single quantum well (SQW) laser diodes were investigated using the admittance spectroscopy (C-V and G/ω-V) method in the temperature range of 80-360 K. The reverse bias C−2 vs. V plots gives a straight line in a wide voltage region, especially in weak inversion region. The values of ΦCV at the absolute temperature (T = 0 K) and the temperature coefficient (α) of barrier height were found as 1.22 eV and −8.65 × 10−4 eV/K, respectively. This value of α is in a close agreement with α of GaAs band gap (−5.45 × 10−4 eV/K). Experimental results show that the capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of the diode are affected by not only temperature but also Rs. The capacitance-voltage-temperature (C-V-T) and conductance-voltage-temperature (G/ω-V-T) characteristics confirmed that temperature and Rs of the diode have effects on the electronic parameters in SQW laser diodes.  相似文献   

19.
Variation ground states of pernigraniline-base polymer were investigated with various values of potential parameter V2,0 in an extended Ginder–Epstein model. The results showed that ring-torsion angles and the energy gap reduced with decreasing V2,0. We estimated pressure perpendicular to nitrogen plane of a chain in the polymer by the ring-torsion angles. While V2,0 decreased from 2.0 to 0.8 eV, our estimated pressure increased from 0 to 9.03 GPa. The results agree with the experimental observations that electrical conductivity is increasing with applied pressure until a saturated value.  相似文献   

20.
《Synthetic Metals》2007,157(6-7):297-302
In this study, the film of chitosan by adding the solution of chitosan being a polymeric compound on the top of an n-Si substrate and then by evaporating solvent was formed. It was seen that the chitosan/n-Si contact demonstrated clearly rectifying behavior and the reverse curves exhibit a weak bias voltage dependence by the current–voltage (IV) curves studied at room temperature. Average barrier height and ideality factor values for this structure were determined as 0.94 eV and 1.81, respectively. Furthermore, the energy distribution of the interface state density located in the semiconductor band gap at the chitosan/n-Si substrate in the energy range (Ec−0.785) to (Ec−0.522) eV have been determined from the IV characteristics. The interface state density Nss ranges from 5.39 × 1012 cm−2 eV−1 in (Ec−0.785) eV to 1.52 × 1013 cm−2 eV−1 in (Ec−0.522) eV. The interface state density has an exponential rise with bias from the midgap towards the bottom of the conduction band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号