首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements were made along the northwestern shore of Lake Erie, Canada to determine whether grain magnetic properties can be used to identify and distinguish sources of beach sediment. Although surface magnetic susceptibilities were highly variable, ranging from 56 to 9867 × 10−5 SI (Bartington MS2D), there was generally a gradual increase from the low beach (near the waterline) towards the high beach; there were also narrow, shore-parallel bands with high susceptibility at various points on the beach surface. Magnetic mineralogy on the beaches was dominated by low-Ti magnetite (570° < Tc < 580 °C), and the effective grain-size varied from pseudosingle domain in the low beach to multidomain on the high beach. Sandy bluff sediments in the eastern part of the study area had magnetic properties (e.g. S-ratios, hysteresis loops, thermomagnetic curves) that were similar to those on the beaches, whereas the magnetic properties of the extensive till bluffs and river basin sediments were quite different. The data suggested that, whereas the beaches in the western part of the study area are supplied with sediment from bluffs several tens of kilometres to the east, the source of the high magnetic concentrations on the eroding beaches of eastern Point Pelee remains to be determined.  相似文献   

2.
This paper analyzes high-resolution lidar data to estimate sediment export to the Pennsylvania Lake Erie littoral zone from lakefront bluff retreat under relatively unique lake-level conditions: approximately a decade of average lake level transitioning into a mild transgression. Analysis identifies bluff-failure patterns important to coastal hazard planning, possible feeder-bluff conservation areas to preserve sediment supply, and data pertinent to sand management in the western Erie County littoral cell (WECLC) and at Presque Isle State Park in the next-downdrift cell.Based on 2007–2015 bluff-face mapping, there were net losses of 318,250 m3 of total-sediment and 105,700 m3 of sand+ (sand-boulders) to the littoral zone. On an average annual basis, bluffs thus exported 39,800 m3 of total-sediment and 13,300 m3 of sand+ to the WECLC. Exports of sand+ by six HUC-12 watersheds ranged from ~0 to 4600 m3/yr, with ~ 30% supplied by Crooked Creek watershed bluffs that occupy only 18% of the coast. Sand+ export volumes reported here were ~65% lower than prior research covering different lake-level phases. Understanding sediment export during periods of average lake level is important because such lake-level phases occur in the record and will likely recur. Incorporating a decade-scale low sediment-supply scenario for sand management in the Presque Isle littoral cell would permit fine-tuning of estimates of sand nourishment needed to mitigate ongoing beach erosion. Uncertainty in bluff-face change can be minimized by expanding data-comparison windows; future tracking of sediment export from Pennsylvania bluffs may not need lidar surveys any more frequently than once every 10–15 years.  相似文献   

3.
Water clarity is an important environmental variable that may affect fish populations by altering the visual environment. Effects can change feeding ability, as well as alter predation risk. The western basin of Lake Erie provides a valuable model system for studying the effects of transparency because the two main tributaries, the Maumee and Detroit rivers, differ substantially in clarity. We used Generalized Additive Models (GAMs) to quantify the relationship between transparency and the observed abundance and length of age-0 yellow perch (Perca flavescens) in August, based on surveys from 1986 to 2006. Secchi data from June to August were included in the models that best explained the variation in yellow perch abundance and length. August values for bottom oxygen and bottom temperature also increased model fit for abundance, whereas only bottom temperature improved model fit for length. Our models indicate that transparency was positively related to the August length while abundance of age-0 yellow perch was inversely related to transparency. Highest abundance was observed in areas with the lowest transparency, with peak abundances observed in areas with less than 1 m of Secchi depth. This is in contrast to August length, which increased as transparency increased, to an asymptote at around 3 m of Secchi depth. The split nature of water clarity conditions in the western basin of Lake Erie has resulted in areas with higher growth potential, versus areas with higher apparent survival.  相似文献   

4.
We simulated bottom resuspension events in Lake Erie, using a coupled three-dimensional hydrodynamic and water quality model. Key parameters in the model, including critical bottom shear stress (τcr) and resuspension rate (α) were calibrated and validated by comparing the model output to observations. These included total suspended solid (TSS) concentrations in the bottom boundary layer (RMSE = 0.74 mgL-1) and water column (RMSE = 0.81 mgL-1), and to time series of acoustic backscatter signal (R2 > 0.8) and turbidity (R2 ≈ 0.4) from long-term moorings near the lakebed in 2008–09 and 2013. Signals from phytoplankton, in spring and summer, caused discrepancies between modeled TSS and the observed turbidity data. Although common practice, we show that literature-based or field-observed critical shear stress should not be directly applied in large-scale Reynolds-averaged sediment model as this will likely underestimate resuspension. In agreement with the literature, the model reproduced more frequent and intensive surface-wave driven resuspension in the shallow regions (< ~20 m), particularly in the western basin, compared to the deeper central and eastern basins, where bottom stresses induced by mean currents (τc) were comparable with those due to surface waves (τw). However, on the north-shore of the eastern basin, τc often predominated over τw. We simulated thermocline motion, including up- and down-welling events and swashing of the internal Poincaré wave, to contribute to τc in the central basin and form nepheloid layers.  相似文献   

5.
Lake Erie is a large freshwater ecosystem with three distinct basins that exhibit an east-to-west gradient of increasing productivity, as well as allochthonous inputs of nutrients and xenobiotics. To evaluate microbial community composition throughout this ecosystem, 435 16S rDNA environmental clones were sequenced from 11 sediment samples throughout the Western, Central, and Eastern basins, as well as the hypoxic “dead zone” of Lake Erie in the hypolimnetic region of the Central basin. Rank abundance distributions of bacterial taxa within each location revealed that Gamma- and Betaproteobacteria, microbes capable of metabolizing a wide range of organic matter pools, comprised a greater fraction of the microbial community within inshore sites of the Central and Western basins compared to the Eastern basin. While geophysical characteristics of the three major basins and the dead zone did not drive significant differences in species diversity, Fast UniFrac analyses revealed microbial community spatial structuring, with the Central basin showing higher phylogenetic uniqueness of bacterial lineages. Principal component analyses based on phylogenetic distances consistently grouped the dead zone with the Central basin and highlighted the distinctiveness of microbial communities from the Eastern basin. Results from this study provide evidence for the local adaptation of microbial communities and the potential role of riverine inputs in modulating taxonomic composition of lacustrine bacterial communities. These results are consistent with previous functional studies on microbial metabolism, which showed that differences in geochemistry across the three basins of Lake Erie play an important role in the local adaptation of microbial communities.  相似文献   

6.
Surface sediments and three sediment cores from the western basin and one sediment core from the Sandusky basin were analyzed to document spatial and temporal changes in five phosphorus fractions and total phosphorus (TP). The areal distributions of the bioavailable fractions NaCl-Pi, NaBD-Pi, and NaOH-Pi and the refractory organic fraction Res-P were broadly consistent and contrasted with those of the detrital fraction HCl-Pi which showed that high concentrations occurred mostly in high-energy littoral zones and low concentrations largely in profundal depositional areas. The contrasting distributions were induced by interactions among tributary inputs, wave action, circulation, and biogeochemical cycling and transfer in the basin. As revealed by the Sandusky basin sediment record, the detrital fraction HCl-Pi was dominant (70% of TP) during European settlement and decreased rapidly by 28.0% in the early 1910s due largely to impoundments of the Maumee and Sandusky Rivers. While HCl-Pi has ever since remained relatively constant, NaCl-Pi, NaBD-Pi, and NaOH-Pi increased significantly between 1950 and 1970 in the two basins. However, the post-regulation sediment records differed considerably among these coring sites. There was a marked increase of TP in two cores, corresponding to recent return of eutrophication and massive harmful algal blooms but contrasting with a relatively constant, low loading into the lake. This signified the role of internal loading as derived partialy from legacy pollution. Furthermore, NaCl-Pi has increased progressively throughout all the records. We conclude that the increased levels of NaCl-Pi in surface sediments may have altered the internal loading and contributed to the resurgences of harmful algal blooms in Lake Erie.  相似文献   

7.
The oligochaete fauna at 40 stations in western Lake Erie were collected in 1982 and compared to oligochaete fauna collected similarly in 1961. A total of 34 taxa, representing 18 Tubificidae and 16 Naididae, were identified. Changes in the proportions of low, moderate, and heavy polluted sediments, as determined by ranges of total numbers of oligochaetes, indicate that, in general, heavy pollution substantially decreased near shore and moderate pollution increased and low pollution decreased in open waters over the 21-year comparison. The most common taxon, the eutrophic species, Limnodrilus hoffmeisteri, decreased in abundance in open water, indicating decreased eutrophication, whereas the distribution and abundance of other indicator taxa, including the eutrophic species L. maumeensis, L. cervix, Quistadrilus multisetosus multisetosus, and mesotrophic species Ilyodrilus templetoni and three species of Aulodrilus indicate increased eutrophication in open water. In general, oligochaete trophic indices (based on tubificid species and abundances) in traditional area designations used in 1961, the nearshore designation (<3.5 km from shore), and areas defined by cluster analysis confirm results of less eutrophic substrates near shore. However, traditional analysis indicates that low pollution was replaced by moderate pollution in open waters and cluster analysis indicates that the zone of least detectable pollution increased in open waters over the 21-year comparison. It may be that the open waters of western Lake Erie were in a stage of transition between pollution designations when sampled in 1982. The present study is valuable because it provides a baseline to assess environmental changes observed in western Lake Erie after many years of pollution abatement programs and before the exponential increase in densities of the trophic shifting zebra mussel Dreissena polymorpha.  相似文献   

8.
Sediment samples were collected from nearshore, tributary and beach environments within and surrounding the northern part of Lake Erie, Ontario to determine the concentrations and distribution of microplastics. Following density separation and microscopic analysis of 29 samples, a total of 1178 microplastic particles were identified. Thirteen nearshore samples contained 0–391 microplastic particles per kg dry weight sediment (kg?1), whereas 4 tributary samples contained 10–462?kg?1 and 12 beach samples contained 50–146?kg?1. The highest concentrations of nearshore microplastics were from near the mouths of the Detroit River in the western basin and the Grand River in the eastern basin, reflecting an urban influence. The highest microplastic concentrations in beach samples were determined from Rondeau Beach in the central basin where geomorphology affects plastics concentration. The Welland Canal sample in the eastern basin contained the greatest concentration of microplastics of the tributary samples, which is consistent with high population density and shipping traffic. The overall abundance of microplastic in northern Lake Erie nearshore, tributary and beach samples is 6 times lower than in sediment sampled from northern Lake Ontario. The nearshore and beach sample results potentially reflect the transport patterns of floating plastics modeled for Lake Erie, which predict that the majority of plastic particles entering the lake are transported to southern shoreline regions rather than northern areas.  相似文献   

9.
The purpose of this paper is to show how a high-resolution numerical circulation model of Lake Erie can be used to gain insight into the spatial and temporal variability of phosphorus (and by inference, other components of the lower food web) in the lake. The computer model simulates the detailed spatial and temporal distribution of total phosphorus in Lake Erie during 1994 based on tributary and atmospheric loading, hydrodynamic transport, and basin-dependent net apparent settling. Phosphorus loads to the lake in 1994 were relatively low, about 30% lower than the average loads for the past 30 years. Results of the model simulations are presented in terms of maps of 1) annually averaged phosphorus concentration, 2) temporal variability of phosphorus concentration, and 3) relative contribution of annual phosphorus load from specific tributaries. Model results illustrate that significant nearshore to offshore gradients occur in the vicinity of tributary mouths and their along-shore plumes. For instance, the annually averaged phosphorus concentration can vary by a factor of 10 from one end of the lake to the other. Phosphorus levels at some points in the lake can change by a factor of 10 in a matter of hours. Variance in phosphorus levels is up to 100 times higher near major tributary mouths than it is in offshore waters. The model is also used to estimate the spatial distribution of phosphorus variability and to produce maps of the relative contribution of individual tributaries to the annual average concentration at each point in the lake.  相似文献   

10.
Previous studies support the hypothesis that large numbers of infaunal burrow-irrigating organisms in the western basin of Lake Erie may increase significantly the sediment oxygen demand, thus enhancing the rate of hypolimnetic oxygen depletion. We conducted laboratory experiments to quantify burrow oxygen dynamics and increased oxygen demand resulting from burrow irrigation using two different year classes of Hexagenia spp. nymphs from western Lake Erie during summer, 2006. Using oxygen microelectrodes and hot film anemometry, we simultaneously determined oxygen concentrations and burrow water flow velocities. Burrow oxygen depletion rates ranged from 21.7 mg/nymph/mo for 15 mm nymphs at 23 °C to 240.7 mg/nymph/mo for 23 mm nymphs at 13 °C. Sealed microcosm experiments demonstrated that mayflies increase the rate of oxygen depletion by 2–5 times that of controls, depending on size of nymph and water temperature, with colder waters having greater impact. At natural population densities, nymph pumping activity increased total sediment oxygen demand 0.3–2.5 times compared to sediments with no mayflies and accounted for 22–71% of the total sediment oxygen demand. Extrapolating laboratory results to the natural system suggest that Hexagenia spp. populations may exert a significant control on oxygen depletion during intermittent stratification. This finding may help explain some of the fluctuations in Hexagenia spp. population densities in western Lake Erie and suggests that mayflies, by causing their own population collapse irrespective of other environmental conditions, may need longer term averages when used as a bio-indicator of the success of pollution-abatement programs in western Lake Erie and possibly throughout the Great Lakes.  相似文献   

11.
Harmful Algal Blooms (HABs), which were largely absent from Lake Erie from the 1980s until the mid-late 1990s, have been growing steadily worse in intensity. While much of the phosphorus loading into the lake prior to 1972 was caused by point-source pollution, approximately 88% to 93% of current loading comes from nonpoint sources, of which agriculture is the dominant land use. A reduction target of 860?metric?tons, or 40% of the total phosphorus spring loading in 2008, has been set with the expectation that such a reduction could limit the size and associated impact of HABs in 9 out of every 10?years. We review the effectiveness of recommended practices aimed at reducing phosphorus loss in agriculture and pair this knowledge with behavioral data on likely adoption to identify how best to achieve the reduction target. The data suggests that the target is feasible as a majority of the farming population is willing to consider many of the recommended practices. However, increases in adoption over time have been minimal, and farmers will need better cost-benefit information, site-specific decision support tools, and technical assistance in order to more rapidly adopt and execute the placement of recommended practices. A combination of voluntary and mandatory approaches may be needed, but policies and programs promoting voluntary adoption should be designed to better target known barriers and maximize voluntary program effectiveness.  相似文献   

12.
Time series measurements of current velocity, wave action, and water transparency were made at two sites—one in 24 m of water and the other in 53 m—in Lake Erie during the fall and winter of 2004–2005. The observations at the shallow site show that bottom resuspension occurred several times during the deployment. Although local resuspension did not occur at the deeper station, several advection episodes were observed. The storms during the observation period were not unusually large, so the processes observed are probably typical of those that occur on a yearly basis. The observations agree reasonably well with previous estimates for both the bottom shear stress during storms, and for the critical shear stress needed to resuspend bottom sediment, but previous estimates of the particle settling velocity are probably too low, while previous estimates of the sediment entrainment rate are too high. The results show that bottom material in the central basin is reworked numerous times before it is finally buried. Deposition in the eastern basin is a more continuous process, but the events observed were not sufficient to match the long-term accumulation rate, so deposition at this site is probably also due in part to larger, more infrequent storms.  相似文献   

13.
Production of dinitrogen gas via microbially mediated anaerobic ammonium oxidation (anammox) and denitrification plays an important role in removal of fixed N from aquatic ecosystems. Here, we investigated anammox and denitrification potentials via the 15N isotope pairing technique in the helium flushed bottom water (~0.2 m above the sediment) of Sandusky Bay, Sandusky Subbasin, and Central Basin in Lake Erie in three consecutive summers (2010?2012). Potential rates of anammox (0–922 nM/day) and denitrification (1 to 355 nM/day) varied greatly among sampling sites during the 3 years we studied. The relative importance of anammox to total N2 production potentially ranged from 0 to 100% and varied temporally and spatially. Our study represents one of the first efforts to measure potential activities of both anammox and denitrification in the water column of Lake Erie and our results indicate the Central Basin of Lake Erie is a hot spot for N removal through anammox and denitrification activities. Further, our data indicate that the water column, specifically hypolimnion, and the surface sediment of the Lake Erie Central Basin are comparatively important for microbially mediated N removal.  相似文献   

14.
鄱阳湖低枯水位变化及趋势性分析研究   总被引:1,自引:0,他引:1  
选取鄱阳湖水位代表站历年来的水位观测资料,分析湖区水位代表站低枯水位变化情况,采用Mann-Kendall非参数检验(M-K检验)、Kendall秩次相关检验(Kendall检验)、Spearman秩次相关检验(Spearman检验)、线性回归趋势检验(LRT检验)等4种方法分析研究鄱阳湖湖口、星子、都昌、棠荫、康山等5个水位站的低枯水位变化趋势.分析表明鄱阳湖湖区湖口、星子、都昌等站10月和11月平均水位均已出现趋势性降低变化.  相似文献   

15.
During the past two decades, burrowing Hexagenia mayflies have returned to the western basin of Lake Erie. Because of their importance as a prey resource for higher trophic levels and their extensive residence time in potentially contaminated sediment, Hexagenia may be a source of heavy metal transfer. To better understand the distribution and transfer of heavy metals in sediment and mayflies, sediment and mayfly nymphs were collected from 24 locations across the western basin of Lake Erie in May 2007. Following USEPA protocols, samples were analyzed for 16 elements using ICP-OES or ICP-MS. Metal concentrations in the sediments exceeded the Threshold Effect Level for at least one metal at all sample sites. Sediment heavy metal distribution profiles indicate metal concentrations are correlated with organic matter content, and the highest heavy metal concentrations were found in the central deeper region of the western basin where organic content in the sediments was greatest. Hexagenia were distributed throughout the western basin, with greatest density (1350/m2) within the Detroit River plume. The Cd and Zn levels in mayflies were on average approximately 4 and 2 times greater, respectively, than sediment levels, and the Cd concentrations in the sediments exceeded the Threshold Effect Level at 27 of 28 sites and exceeded the Probable Effect Level at 9 of 28 sites. Spatial representation of heavy metal concentrations in mayflies exhibited a similar pattern to the spatial distribution of heavy metals and organic matter in the sediments with higher concentrations of metals found in mayflies residing in the central deeper region of the western basin.  相似文献   

16.
Sediment resuspension is critical to ecosystem function in shallow lakes. Turbidity is one of the most commonly used indicators of sediment resuspension and has proven to be strongly related with wind. However, it is still difficult to predict sediment resuspension due to its complicated mechanisms. In this study, a support vector regression (SVR) model considering the cumulative effect of wind speed was trained to predict sediment resuspension based on intensified field observations at two sites in Lake Taihu. The accuracy of the SVR model was evaluated, and the initial turbidity was introduced to the model to illustrate its contribution to sediment resuspension. The critical wind speed was also evaluated based on this model. The results indicate that the SVR model considering the cumulative effect of wind speed can increase the accuracy of prediction in comparison with traditional fitting methods. The root-mean-square error (RMSE) of the predicted turbidity dropped to 11.36 NTU at one site and 16.78 NTU at the other, and the maximal information coefficient (cimax) for the relationship between wind speed and turbidity increased to 0.56 for both observation sites. The introduction of initial turbidity significantly improved the performance of the SVR model, with an RMSE value lower than 8.00 NTU and a cimax value higher than 0.95. Analysis of the critical wind speed using the SVR model shows that the critical wind speed generally increased with the rise of initial turbidity. The critical wind speeds at initial turbidities of 30, 40, 50, and 60 NTU were 5, 6, 7, and 7 m/s, respectively.  相似文献   

17.
Lake Erie's water quality has fluctuated since European settlement due to cultural eutrophication and the effects of invasive species. Our attempts to understand the cause-and-effect linkages between observed ecosystem changes and various stressors are evolving. Non-indigenous species, pollutants, land-use and climate change that can alter a lake's physical and chemical environment can manifest rapid changes in community composition and abundance of phytoplankton. As such, for many decades researchers have used phytoplankton data from Lake Erie to track environmental changes. We provide a chronological account of previous and ongoing assessments of pelagic algae to summarize past and present environmental conditions of Lake Erie. This review necessarily focuses on diatom-based assessments as their preserved remains in sediments have been used to hind-cast human-induced impacts and recovery. Because of their uniqueness, this review summarizes where possible the long-term trends according to the western, central and eastern lake basins. Overall, this historical assessment summarizes a period of significant eutrophication throughout most of the 20th century, followed by water quality improvement due to nutrient reductions and establishment of filter-feeding dreissenids. Recent data suggest new issues associated with blooms of diatoms and blue-green algae. The challenges facing Lake Erie underline the need for continued monitoring and evaluation of historical records that will help us distinguish natural from anthropogenic changes, and to reveal the causes and extent of environmental insults in order to make management decisions.  相似文献   

18.
Concern exists that the introduction of dreissenid mussels following long-term effects of pollution may have completely eliminated native mussel species from Lake Erie. Natural seiche events were used to facilitate surveys for live unionids on five occasions in the western basin of Lake Erie and Sandusky Bay between 2007 and 2009, and beach and estuary surveys were conducted at numerous additional sites between 2004 and 2009. Sixteen unionid species were found living in or near Lake Erie, including six sites in the nearshore zone of the lake. Each community consisted of live individuals from two to eight species, and evidence included live and/or fresh dead material from several state listed species at multiple sites. Where estimated, the mean overall density was low at 0.09 unionids/m2, although similar to other known unionid refuges in the lower Great Lakes. While the ephemeral nature of seiche events makes them a limited survey tool, their application combined with increasing numbers of fresh shells washing ashore over the past few years indicates that unionids are extant in the western basin of Lake Erie, and may further suggest that conditions may be improving for native mussel species.  相似文献   

19.
Phytoplankton growth dynamics in offshore Lake Erie during mid-winter   总被引:1,自引:0,他引:1  
The phytoplankton community in offshore Lake Erie in mid-winter was active but little net growth was occurring which suggests that high reported accumulations of phytoplankton in this lake in February are likely the product of previous bloom conditions. We measured phytoplankton dynamics as size-specific growth and loss rates of phytoplankton using dilution assays and antibiotic assays in ice-covered offshore waters of Lake Erie during the mid-winter period in 2008, 2009, and 2010. Total chlorophyll-a specific rates (average ± standard deviation) measured using dilution assays for growth ([0.72 ± 0.35/d]) and loss ([0.98 ± 0.36/d]) were closely matched. Growth and loss rates of picocyanobacteria determined using an antibiotic technique ranged from − 0.10 to 1.22/d and − 0.11 to − 2.35/d, respectively. The results indicate a trend of higher grazing rate than growth rate but that this difference is not significantly different from zero, suggesting a state of phytoplankton population size equilibrium at this time of year in the waters sampled.  相似文献   

20.
Hypoxia is a common feature in the offshore central basin of Lake Erie. In the late summer of 2012, a strong wind-induced upwelling event transported oxygen depleted water to the nearshore zones of northern Lake Erie. Wind speed, duration and direction relative to the shoreline of individual wind events determined the extent of nearshore zone affected by the hypoxic waters. The upwelling event resulted in adverse water quality along some stretches of the northern shoreline of Lake Erie with persistent anoxia, which was mainly responsible for the mortality of fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号