首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is concern of economic and environmental damage occuring if any of the four major aquacultured carp species of China, black carp Mylopharyngodon piceus, bighead carp Hypophthalmichthys nobilis, silver carp H. molitrix, or grass carp Ctenopharyngodon idella, were to establish in the Laurentian Great Lakes. All four are reproducing in the Mississippi River Basin. We review the status of these fishes in relation to the Great Lakes and their proximity to pathways into the Great Lakes, based on captures and collections of eggs and larvae. No black carp have been captured in the Great Lakes Basin. One silver carp and one bighead carp were captured within the Chicago Area Waterway System, on the Great Lakes side of electric barriers designed to keep carp from entering the Great Lakes from the greater Mississippi River Basin. Three bighead carp were captured in Lake Erie, none later than the year 2000. By December 2019, at least 650 grass carps had been captured in the Great Lakes Basin, most in western Lake Erie, but none in Lake Superior. Grass carp reproduction has been documented in the Sandusky and Maumee rivers in Ohio, tributaries of Lake Erie. We also discuss environmental DNA (eDNA) results as an early detection and monitoring tool for bighead and silver carps. Detection of eDNA does not necessarily indicate presence of live fish, but bigheaded carp eDNA has been detected on the Great Lakes side of the barriers and in a small proportion of samples from the western basin of Lake Erie.  相似文献   

2.
The Chinese mitten crab (Eriocheir sinensis) is an invasive organism of concern, with established non-native populations in Europe and California, USA. The species is thought to pose a risk to other North American waterways, including the Great Lakes and St. Lawrence Seaway. Since 1965, there have been sixteen confirmed adult E. sinensis caught in the North American Great Lakes or adjoining waterways. Analysis of their mitochondrial DNA sequence variation for part of the cytochrome c oxidase subunit I gene discerned three haplotypes among seven individuals (caught between 1973 and 2005), identical to common haplotypes in Europe. Analysis of mitochondrial haplotype frequencies and shipping patterns suggests that E. sinensis has been introduced to the Great Lakes from Europe, although we are unable to preclude native Asian populations as putative sources. The species is catadromous, migrating between salt and fresh water to complete its life cycle. This trait makes it unlikely that E. sinensis will establish a breeding population in the Great Lakes proper, which are separated from saltwater by a considerable distance and significant instream barriers such as waterfalls and navigation locks. However, the recent discovery of two confirmed mitten crabs in the St. Lawrence River, which could be more readily colonized, underscores the risk posed by the repeated introduction of this species into the Great Lakes and St. Lawrence Seaway.  相似文献   

3.
Great Lakes populations of yellow perch have fluctuated throughout past decades to the present due to unstable recruitment patterns and exploitation. Our study analyzes genetic diversity and structure across the native range in order to interpret phylogeographic history and contemporary patterns. We compare complete mitochondrial DNA control region sequences (912 bp) from 568 spawning individuals at 32 sites, encompassing all 5 Great Lakes and outlying watersheds from the upper Mississippi River, Lake Winnipeg, Lake Champlain, and Atlantic and Gulf coastal relict populations. These broad-scale divergences additionally are compared with fine-scale patterns from 334 individuals at 16 spawning sites across Lake Erie's 4 fishery management units. We identify 21 mtDNA haplotypes, including a widespread type that totals 87% of individuals across the Great Lakes. Overall genetic diversity is relatively low in comparison with other Great Lakes fishes, congruent with prior allozyme and microsatellite studies. The largest genetic demarcation separates 2 primary population groups: one in the Great Lakes, Lake Winnipeg, and upper Mississippi River watersheds and the other along the Atlantic and Gulf coasts, together with Lake Champlain; which diverged ∼ 365,000 years ago. In addition, the watersheds house genetically separable groups, whose patterns reflect broad-scale isolation by geographic distance. A few spawning groups show some fine-scale differentiation within Lake Erie, which do not reflect fishery management units and need further study with higher-resolution markers.  相似文献   

4.
Bangia atropurpurea was first observed in Lake Erie in 1964 and subsequently spread to the lower Laurentian Great Lakes by the mid to late 1970s. The present study was initiated to examine the recent distribution of B. atropurpurea in the Great Lakes, the seasonal variation of the alga and the putative origin of this species based on DNA sequence analysis. From surveys in 1995 and 2002, this species has clearly spread, with newly identified populations observed in Lakes Huron, Michigan, Georgian Bay and the St. Lawrence River. Morphological analyses showed that Great Lakes populations from individual lakes or neighboring populations did not group together in cluster analyses. Correlation analysis, however, revealed significant relationships between the presence or absence of Bangia among the studied sites with pH and specific conductance as those locations that had stable populations had a mean pH and conductance of 8.2 and 353 μS·cm− 1 respectively. Seasonal variation in morphology of a population from Burlington, Ontario (Lake Ontario, Canada) was examined monthly for one year. Maximum filament length occurred in April, with the greatest diameter and archaeospore production observed in May. Significant correlations were also noted for many morphological characteristics with water temperature, population height on the shoreline relative to the waterline and total phosphorus. Collections of B. atropurpurea analyzed from the Great Lakes were observed to be identical in sequence to collections of European freshwater Bangia in the cox2–3 gene spacer, the nuclear internal transcribed spacers (ITS 1 and 2) and the 5.8S rRNA gene (between the small and large subunits of the rRNA gene). These results suggest a recent European origin; however, further global collections of B. atropurpurea and microsatellite analyses are necessary to confirm this hypothesis.  相似文献   

5.
Aquatic invasive species introductions are a global environmental concern. Negative effects of invasive species are often manifested in alterations of food web structure and through competition with and predation upon native species. The Illinois River, Illinois, USA harbors invasive, planktivorous bighead, Hypophthalmichthys nobilis, and silver carp, Hypophthalmichthys molitrix, and can be a model ecosystem to test for their effects on zooplankton communities. We tested for bighead and silver carp effects on zooplankton communities pre- and post-establishment within one reach of the Illinois River and among river reaches that varied in abundances of these invasive fishes. The establishment of bighead and silver carp was associated with increased rotifer abundances, while cladoceran and copepod abundances were reduced relative to pre-establishment. Cladoceran and copepod abundance and biomass were negatively associated with bighead and silver carp abundances among reaches. Total zooplankton and rotifer abundance and biomass were positively associated with bighead and silver carp abundances. Our results suggest that bighead and silver carp have changed the zooplankton community of the Illinois River which may have implications for the food web, native species, and other ecosystems poised to be invaded, such as the Laurentian Great Lakes.  相似文献   

6.
Abstract

This paper analyzes recent developments regarding Missouri River management and water use, and the potential for an emerging inter-basin water dispute involving the Great Lakes. It is suggested that revisions to the U.S. Army Corps of Engineers' master manual for the Missouri River and increasing efforts to put Missouri River water to beneficial use in support of economic growth present the prospect of low water levels in the Mississippi River. With a history of looking to the Chicago diversion as a source for augmenting flows in the Mississippi River, it may yet again prove to be an irresistible temptation. The institutional capacity for managing such a water dispute seems surprisingly weak. The direction suggested is that mechanisms should be installed to ensure that Great Lakes water remains in its basin, consistent with watershed management practices. The recent efforts by the Great Lakes states and provinces represent an important development in this direction. It is further suggested that demand pressures in the Missouri River should be met through a similar commitment, potentially through a water sharing arrangement on the Missouri River, something which could be encouraged in part by ensuring stricter controls on the Chicago diversion.  相似文献   

7.
The importance of fish spawning habitat in channels connecting the Great Lakes to fishery productivity in those lakes is poorly understood and has not been adequately documented. The Detroit River is a reputed spawning and nursery area for many fish, including walleye (Sander vitreus) that migrate between adjacent Lakes Erie and St. Clair. During April–May 2004, near the head of the Detroit River, we collected 136 fish eggs from the bottom of the river on egg mats. We incubated the eggs at the Great Lakes Science Center until they hatched. All eleven larvae that hatched from the eggs were identified as walleye. These eggs and larvae are the first credible scientific evidence that walleye spawn in the Detroit River. Their origin might be a stock of river-spawning walleye. Such a stock of walleye could potentially add resilience to production by walleye stocks that spawn and are harvested in adjacent waters.  相似文献   

8.
Little is known of mudpuppy (Necturus maculosus) population structure and ecology; some populations in the Great Lakes are thought to be in decline. Mudpuppies are the obligate hosts for the mudpuppy mussel (Simpsonaias ambigua), a species that is endangered in Canada and in many Great Lakes states. We surveyed mudpuppies from the Sydenham River, the only known Canadian locality of the mudpuppy mussel, in order to generate information on relative density, deformity rates and population age/size structure and used this information to compare them to known mudpuppy populations from Great Lakes sites in the Detroit River, Lake St. Clair and Long Point in Lake Erie. Deformity rates were elevated at some sites in the Sydenham River. The relative density of mudpuppies in the Sydenham River was lower than that of other Great Lakes sites and their age was skewed towards younger individuals. Although at lower densities than at other Great Lakes sites, the mudpuppy population in the Sydenham River appears stable and is showing signs of recruitment which bodes well for the future of the mudpuppy mussel population of the river.  相似文献   

9.
The New Zealand mud snail (Potamopyrgus antipodarum) is an invasive species in Europe, Japan, Australia, and North America. In the western United States it is a species of special concern where population densities in some rivers and streams are very large (∼300,000 per m2) and considerable ecological effects of its presence have been reported. Much less about the effects of this species is known in the Great Lakes, where the snail was found in Lake Ontario and the St. Lawrence River in 1991. Here we report the occurrence of the snail in Lake Erie. Two P. antipodarum were collected in 18 m deep water (sampling range 5–18 m) in Lake Erie off shore of Presque Isle State Park near Erie, Pennsylvania in the summer of 2005 and others were collected off of Sturgeon Point in Lake Erie (sampling range 5–20 m) south of Buffalo, NY and in the central basin of Lake Erie (18 m) in 2006. This finding demonstrates that this species continues to expand its range in the Great Lakes. The range expansion increases the likelihood that it may become established in rivers and streams emptying into the Great Lakes where higher densities and greater ecological damage may result.  相似文献   

10.
We investigated several common, needle-shaped diatoms to better characterize the taxonomy of the genus Fragilaria in the Laurentian Great Lakes. We conducted diatom morphometric analysis facilitated by SEM and LM imaging on samples collected as a part of the USEPA’s long-term biological monitoring program. We resolved several decades-long taxonomic problems in the Great Lakes. The results indicated that previous records of species formerly belonging to the genus Synedra, such as S. (Fragilaria) ostenfeldii, S. (Fragilaria) radians, and S. filiformis, should be corrected as these species likely do not occur in the Great Lakes. Valve morphology confirmed the presence of four previously undescribed species: Fragilaria andreseniana sp. nov., Fragilaria stoermeriana sp. nov., Fragilaria limnetica sp. nov., and Fragilaria michiganensis sp. nov. The morphology of several other Fragilaria taxa in the Great Lakes was examined, including a teratologic taxon (Fragilaria sp. 1), Fragilaria crotonensis, Fragilaria grunowii, and a taxon showing morphological affinity to Fragilaria lemanensis (reported here as Fragilaria cf. lemanensis). The spatial and seasonal distributions of these needle-shaped taxa were also analyzed and discussed.  相似文献   

11.
Periphyton was collected on navigational buoys in the Montreal island sector of the St. Lawrence River during 1994–95 to compare biomass and species composition in the transparent “green” waters originating from the Great Lakes with those found in the colored, more turbid “brown” waters coming from the Ottawa River. Periphyton biomass (chlorophyll a, ash free dry mass, density and biovolume) was depressed in brown waters and differences in species composition were observed at the class (i.e., diatoms more important in brown waters) and species level (i.e., Melosira varians more abundant in brown waters). Comparison of 1994 and 1995 with 1982 and 1973 data supported the observed differences in biomass between brown and green waters, yet showed no major temporal shifts in periphyton species composition despite reductions in phosphorus loadings to the Great Lakes and the St. Lawrence River during that 20-yr period. Biomass (density and biovolume) of Cladophora and relative abundance of chlorophytes appeared much higher in 1982 than recorded in 1994 and 1995. Cladophora influences diatom community composition by providing a substratum for epiphytes and thus represents a key species controlling the structure of periphyton assemblages. Future monitoring efforts in the St. Lawrence River should focus on this species and include a standardization of sampling and enumeration methods.  相似文献   

12.
Round gobies (Neogobius melanostomus) were introduced to the Great Lakes presumably as a result of ballast water releases from seagoing freighters returning from European water bodies. These unwelcome fish have become established in the Great Lakes region and are expanding their range to suitable portions of other interior drainage basins including the Mississippi River traversing the central United States and the Trent-Severn waterway spanning south-central Ontario. If the invasion continues, use of chemical toxicants as a control measure may be necessary. Toxicity tests of the currently registered piscicides antimycin, rotenone, 3-trifluoromethyl-4-nitrophenol (TFM), and Bayluscide® were conducted with three fish species native to the Great Lakes and round gobies collected from the Illinois Waterway. Tests indicated that round gobies are sensitive to all of the piscicides, however, the level of sensitivity is similar to that of the native fish species tested. Therefore, currently registered piscicides have limited potential to selectively remove round gobies. Bottom-release formulations of Bayluscide® and antimycin were also evaluated as control agents for the normally bottom-dwelling round goby. Avoidance behavior tests demonstrated that the round goby did not react to the presence of either chemical. Therefore, the bottom-release formulations may have some application for the selective removal of round gobies, and may be one of the few tools presently available to fishery managers to help limit the range expansion of this invasive fish.  相似文献   

13.
Recent invasion theory has hypothesized that newly established exotic species may initially be free of their native parasites, augmenting their population success. Others have hypothesized that invaders may introduce exotic parasites to native species and/or may become hosts to native parasites in their new habitats. Our study analyzed the parasites of two exotic Eurasian gobies that were detected in the Great Lakes in 1990: the round goby Apollonia melanostoma and the tubenose goby Proterorhinus semilunaris. We compared our results from the central region of their introduced ranges in Lakes Huron, St. Clair, and Erie with other studies in the Great Lakes over the past decade, as well as Eurasian native and nonindigenous habitats. Results showed that goby-specific metazoan parasites were absent in the Great Lakes, and all but one species were represented only as larvae, suggesting that adult parasites presently are poorly-adapted to the new gobies as hosts. Seven parasitic species are known to infest the tubenose goby in the Great Lakes, including our new finding of the acanthocephalan Southwellina hispida, and all are rare. We provide the first findings of four parasite species in the round goby and clarified two others, totaling 22 in the Great Lakes—with most being rare. In contrast, 72 round goby parasites occur in the Black Sea region. Trematodes are the most common parasitic group of the round goby in the Great Lakes, as in their native Black Sea range and Baltic Sea introduction. Holarctic trematode Diplostomum spathaceum larvae, which are one of two widely distributed species shared with Eurasia, were found in round goby eyes from all Great Lakes localities except Lake Huron proper. Our study and others reveal no overall increases in parasitism of the invasive gobies over the past decade after their establishment in the Great Lakes. In conclusion, the parasite “load” on the invasive gobies appears relatively low in comparison with their native habitats, lending support to the “enemy release hypothesis.”  相似文献   

14.
Many nonindigenous species (NIS) present in the Laurentian Great Lakes are expanding their ranges to inland lakes and streams. This study used cladoceran microfossils to examine the invasion history of Eubosmina coregoni, the first known nonindigenous zooplankter to invade Lake of the Woods (LOW), Ontario, Canada. Sediment cores from 16 sites in LOW were used to analyze broad-scale presence/absence of E. coregoni prior to human development (bottom sediment samples) in comparison with present-day distribution (top sediment samples). E. coregoni had the highest relative abundance in the northern and eastern regions of LOW and the abundance of all cladoceran remains was low in the southern region of the lake. A long core (time core) from Clearwater Bay provided a more detailed historical account of E. coregoni's abundance in the northern region of LOW, indicating that E. coregoni was first detected in the lake in the early 1990s, approximately 25 years after it was discovered in the Laurentian Great Lakes. Results obtained in this study have illuminated temporal and spatial patterns of colonization of this inland water body. Study of the early invasion dynamics of NIS in these inland lakes may aid in the prevention of future invasions of taxa that have already altered the food web dynamics in the Laurentian Great Lakes.  相似文献   

15.
Atlantic salmon (Salmo salar) are native to Lake Ontario; but their populations severely declined by the late 1800s due to human influences. During the early to mid-1900s, Atlantic salmon were stocked throughout the Great Lakes in effort to reestablish them into Lake Ontario and introduce the species into the upper Great Lakes. However, these efforts experienced minimal success. In 1987, Lake Superior State University and the Michigan Department of Natural Resources began stocking Atlantic salmon in the St. Marys River, Michigan, which has resulted in a successful, self-supporting hatchery operation and stable recreational Atlantic salmon fishery. Possibly due to a combination of competition with other salmonid species for spawning habitat, prey selection causing detrimental effects on early life stages and high rates of early mortality syndrome, Atlantic salmon appeared to be severely limited in their ability to naturally reproduce within the upper Great Lakes. In 2012, the first unequivocal documentation of naturally reproduced Atlantic salmon in the St. Marys River was recorded, downstream from the compensation works and parallel to the Soo Locks in Sault Ste. Marie, Michigan.  相似文献   

16.
In September 2004, one live and healthy female specimen of the Chinese mitten crab (Eriocheir sinensis) was captured in a fishing trap on the south shore of the St. Lawrence River, opposite Quebec City. This is the first report of this non-indigenous and invasive species in the St. Lawrence River or any river on the Eastern Seaboard of North America. As opposed to the Laurentian Great Lakes, where this catadromous species has previously been reported but never became established, the proximity of estuarine salt waters downstream of Quebec City might provide suitable habitats and favorable environmental conditions for the reproduction and establishment of populations in the lower St. Lawrence River.  相似文献   

17.
An invasive Eurasian fish, the round goby Neogobius melanostomus, has recently spread from the Great Lakes into the St. Lawrence River. We quantified prey preferences of this benthivore and determined whether its predatory impacts on molluscs in the river are similar to those in the Great Lakes. We measured the size structure of gastropods and dreissenid mussels at 13 St. Lawrence River sites where round goby densities ranged from 0 to 6 m− 2. For four of these sites, data were available for multiple years before and after invasion. Contrary to studies in the Great Lakes, there were no consistent effects of round goby density on the size structure of dreissenids, although there was an ontogenetic diet shift toward dreissenids. However, the abundance and richness of small gastropods (≤ 14 mm) was negatively correlated with round goby density across all sites, and declined over time at three of four sites sampled before and after invasion. Median gastropod size also declined across sites with increasing round goby density. Gastropods (as well as chironomid larvae, caddisfly larvae, and ostracods) were consistently among the most preferred prey items consumed by gobies, whereas dreissenids (as well as leeches and freshwater mites) were consistently avoided. These results indicate the major role of the round goby in structuring gastropod populations in the St. Lawrence River, and highlight large-scale spatial variation in its predatory impact on dreissenid populations.  相似文献   

18.
The Electric Dispersal Barrier System (EDBS) in the Chicago Sanitary and Ship Canal (CSSC) was built to limit the interbasin transfer of aquatic invasive species between the Mississippi River Basin and the Great Lakes Basin. Commercial barge traffic, or tows, moving downstream through the EDBS can facilitate the upstream passage of small fish through the barrier by reducing the voltage gradient of the barrier and causing localized upstream return currents. This study tested whether it is possible to prevent upstream passage of small fish across the barrier by preventing upstream return currents. Measurements of water velocity, voltage gradient, and tow speed, as well as sonar-based observations of resident fish, were made as a tow transited the EDBS moving downstream. The results indicate that upstream return currents can be prevented for typical flow conditions in the CSSC (ambient velocity = 0.15 to 0.23 m/s) when tow speeds are <0.46 m/s. Similarly, increasing the ambient velocity above typical values can prevent upstream return currents for faster tow speeds and larger tows. Additionally, preventing upstream return currents at the EDBS may reduce, but does not prevent, tow-mediated upstream fish passages because tows also cause a temporary reduction in the streamwise voltage gradient at the EDBS. These results have implications for the management of invasive bigheaded carps in the Illinois Waterway.  相似文献   

19.
Lake whitefish (Coregonus clupeaformis Mitchill), an important commercial species in the Laurentian Great Lakes, have experienced decreased growth and condition in regions of the upper Great Lakes over the past 20 years. Increases in lake whitefish density and decreases in the density of Diporeia spp., an energy rich and historically important part of the lake whitefish diet, have been implicated in the recent declines in lake whitefish growth and condition. The goal of this study was to describe lake whitefish fecundity, egg lipid content, and total ovary lipid content in selected regions of Lakes Huron, Michigan, and Superior in 1986–87 and 2003–05, two time periods with different lake whitefish and Diporeia densities. Under conditions of high lake whitefish density and low Diporeia density, female lake whitefish in the upper Laurentian Great Lakes generally produced fewer eggs. Egg lipid content was higher in 2003–05 than in 1986–87 at all sites, regardless of changes in lake whitefish or Diporeia densities. Total ovary lipid content and lake whitefish abundance were inversely related, while there was no significant relationship between total ovary lipid content and Diporeia density. The amount of energy that lake whitefish invested in egg production was more closely associated with lake whitefish abundance than with Diporeia density. This study provides evidence that recent changes in production dynamics of Great Lakes lake whitefish have not been driven solely by declines in Diporeia but have been significantly influenced by lake whitefish abundance.  相似文献   

20.
The Asian fish tapeworm (Bothriocephalus acheilognathi) is an introduced species that has spread throughout much of the United States and into Canada. This cestode was found in a specimen of bluntnose minnow (Pimephales notatus) collected from Grosse Îsle in the Detroit River in September, 2002. This parasite is a known pathogen that can cause weight loss, anemia, and mortality in young fishes. This is the first report of B. acheilognathi in the Great Lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号