首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Residential highrise building fire of height above 200 m is now a concern in the Far East. Long-term survey study on fire load density indicated that high amount of combustibles over the local upper limit of 1135 M Jm−2 used to be stored in residential flats. Wind-induced air-flow rates through openings at upper levels of those tall buildings can be very high. Stack effect in areas with large indoor and outdoor temperature differences (such as 14 °C indoor and − 30 °C outdoor at Harbin, Heilongjiang, China) will also give high ventilation rate through leakage areas. Adequate oxygen is then supplied to burn up all stored combustibles to give a big fire. In applying performance-based design to determine the fire safety provisions, heat release rate of the design fire is the first parameter to decide. In this paper, stack effect and wind action on possible increase in the heat release rate for fires in supertall residential buildings will be explored. Air intake rates through openings to rooms at high levels due to stack effect and wind action are estimated by simple empirical formula. The maximum heat release rates for well-developed room fires in these tall buildings under different stack and wind conditions are determined by varying two parameters. Air flow rate through openings in an 800 m tall building induced by wind gust can be over 20 times the value at ground level. Consequently, heat release rate can be much higher, confirming experimental studies on building fires under wind action.  相似文献   

3.
Cross-wind response of tall buildings   总被引:1,自引:0,他引:1  
A design procedure was developed using random vibration theory and uses mode-generalized cross-wind force spectra and aerodynamic data to calculate the cross-wind displacement and acceleration responses of tall buildings. The force spectra of a number of building shapes and sizes in both suburban and city centre type wind flow are presented. The proposed design procedure gives reasonable estimates of the cross-wind response, compared with wind tunnel measurements, at reduced wind velocities and at structural damping values consistent with modern habitable tall building design. This allows assessment of the structural requirements of tall buildings to be made at an early design stage, and also allows the designers to assess the need for more detailed and expansive wind tunnel model tests.  相似文献   

4.
Interference effects on a row of square-plan tall buildings arranged in close proximity are investigated with wind tunnel experiments. Wind forces and moments on each building in the row are measured with the base balance under different wind incidence angles and different separation distances between buildings. As a result of sheltering, inner buildings inside the row are found to experience much reduced wind load components acting along direction of the row (x) at most wind angles, as compared to the isolated building situation. However, these load components may exhibit phenomena of upwind-acting force and even negative drag force. Increase in x-direction wind loads is observed on the upwind edge building when wind blows at an oblique angle to the row. Other interference effects on y-direction wind loads and torsion are described. Pressure measurements on building walls and numerical computation of wind flow are carried out at some flow cases to explore the interference mechanisms. At wind angle around 30° to the row, wind is visualized to flow through the narrow building gaps at high speeds, resulting in highly negative pressure on associated building walls. This negative pressure and the single-wake behavior of flow over the row of buildings provide explanations for the observed interference effects. Interference on fluctuating wind loads is also investigated. Across-wind load fluctuations are much smaller than the isolated building case with the disappearance of vortex shedding peak in the load spectra. Buildings in a row thus do not exhibit resonant across-wind response at reduced velocities around 10 as an isolated square-plan tall building.  相似文献   

5.
Zhang  Xuelin  Weerasuriya  A. U.  Lu  Bin  Tse  K. T.  Liu  Chun Ho  Tamura  Yukio 《Building Simulation》2020,13(2):439-456

Unconventional configurations of tall buildings are noticeably different from their counterpart of traditional building designs but nevertheless, the unconventional configurations have often been adopted for tall buildings without their impact on the pedestrian-level wind environment (PLWE) fully understood. To fill the existing knowledge gap, this study investigates the PLWE near a 400 m super-tall building with various conventional and unconventional configurations in a regular urban area. Computational fluid dynamics (CFD) simulations were conducted for three incident wind directions (θ = 0°, 22.5°, and 45°) to investigate mean wind speed at the pedestrian level using the three-dimensional (3D), steady-state, Reynolds-averaged Navier-Stokes (RANS) technique. The results reveal 1.5- to 2.5-fold increase in maximum wind speed in the urban area after the construction of a super-tall building. The magnitude of the maximum wind speed and areas with high and low wind speeds in the PLWE, however, significantly vary with building design and incident wind direction. The configurations with sharp corners, large plan aspect ratios and frontal areas and the orientation consistently show a strong dependency on incident wind direction except the one with rounded plan shapes. The location of building openings and direction of building inclination are two other factors that modify the PLWE in an urban area. Moreover, the projected width of the super-tall building at a height slightly above the roof level of surrounding buildings is critical for estimating the areas of high and low wind speed at the pedestrian level.

  相似文献   

6.
The enhanced dynamic response of a tall square building under interference excitation from neighbouring tall buildings has been studied in a series of wind-tunnel model tests. In a low-turbulence wind environment and under normal strong wind conditions, the dynamic loads on the upstream of an identical pair of tall buildings may increase by a factor of up to 4.4. The dynamic loads on the downstream building of the pair may increase by a factor of up to 3.2 due to “resonant buffeting”. Measurements of along-wind and cross-wind force spectra and a number of wake spectra provide an explanation for the observed behaviour. Possible excitation mechanisms are discussed and critical building arrangements presented. The large interference loads found in this study indicate that interference excitation should be carefully considered in the design of tall buildings.  相似文献   

7.
丁宏军 《建筑电气》2011,30(9):44-47
结合我国近年来发生的高层建筑火灾案例,归纳诱发建筑火灾的外部因素和内部因素,对由外部因素诱发的火灾产生的不同后果及相关的建筑消防设施配备、管理等方面进行对比分析。总结出建筑外部诱发火灾因素主要包括生产作业不当和外挂灯箱故障,建筑内部诱发火灾因素主要包括电气故障和生活用火不当等;对各种诱发火灾因素提出有针对性的对策;提出...  相似文献   

8.
Zhu  Luqing  Yuan  Xiangyong  Gao  Zihe  Ji  Jie 《Fire Technology》2020,56(2):863-881

High-rise buildings are usually in a windy environment. The motion of fire-induced smoke and fire behaviors may be strongly affected by the external wind forces except by the stack effect. It turns out that wind with different directions and velocities can cause disparity in fire dynamics. Since most previous researches only focused on the cross wind conditions, this work investigated the effect of external side wind from 0 m/s to 1.21 m/s on the air flow behaviors, combustion characteristics of methanol pools and smoke temperature in a 1/6 scaled corridor connected to a 6-floor shaft. A remarkable observation is that the external side wind (parallel to top window, shown in Fig. 1) leads to pressure attenuation inside building and induces air to flow inside through bottom door. Therefore, the smoke spreads faster under the synergic effects of side wind and stack effect. At the steady stage, the supplement air flow velocity increases with wind velocity but remains proportional to 1/3 power of HRR. An equation incorporating the wind effect is proposed to predict the air flow velocity. Results also show that compared to cross wind conditions, the mass loss rates of methanol pools increase at high wind velocities. The wind effect on smoke temperature is obvious in cases with small pools. Here, the temperature first increases to a peak value and then decreases with increased wind velocity. However, the temperature remains the same in cases with large pools within our wind velocity range. The temperature in the shaft is also correlated with mass loss rate and wind velocity. This work shows that external side wind would increase the fire hazard of buildings by contributing to the combustion and spreading of smoke. Thus engineers should consider the effect of side wind carefully when designing smoke control system.

  相似文献   

9.
Conducting fire evacuation drills in modern buildings under realistic fire conditions can be difficult. Typical fire drills do not feature dynamic events such as smoke filled corridors, fires in unexpected places or blocked fire exits that require on the spot decisions from evacuees. One alternative is the use of virtual environments. Virtual environments can support the training and observation of fire evacuee behaviours in 3D virtual buildings. However complex virtual environments can be difficult to build. This paper explores how the reuse of computer game technology can aid in the rapid prototyping of virtual environments which can be populated with fire drill evacuation scenarios. Over a three week period, a single developer constructed a realistic model of a real world building to support virtual fire drill evaluations. While participants in a user study found the simulated environment realistic, performance metrics indicated clustering in the results based on participants’ previous gaming experience.  相似文献   

10.
This paper discusses a procedure for the use of fire modelling in the performance-based design environment to quantify design fires for commercial buildings. This procedure includes building surveys, medium-and full-scale experiments and computer modelling. In this study, a survey of commercial premises was conducted to determine fire loads and types of combustibles present in these buildings. Statistical data from the literature were analysed to determine the frequency of fires, ignition sources, and locations relevant to these premises. Based on the results of the survey and the statistical analyses a number of fuel packages were designed that represent fire loads and combustible materials in commercial buildings. The fuel packages were used to perform medium- and full-scale, post-flashover fire tests to collect data on heat release rates, compartment temperatures and production and concentration of toxic gases. Based on the experimental results, input data files for the computational model, Fire Dynamics Simulator (FDS), were developed to simulate the burning characteristics of the fuel packages observed in the experiments. Comparative analysis between FDS model predictions and experimental data of HRR, carbon monoxide (CO), and carbon dioxide (CO2), indicated that FDS model was able to predict the HRR, temperature profile in the burn room, and the total production of CO and CO2 for medium- and large-scale experiments as well as real size stores.  相似文献   

11.
12.
火灾下钢结构楼板的薄膜作用   总被引:6,自引:0,他引:6  
通过对真实火灾中的足尺火灾试验和观察显示,合组合楼板和承载钢梁的建筑物的结构承载力比现行杭大设计方法的建议值高出许多。因此规范中规定所有承载钢梁都要添加被动防火保护是不必要的。现行设计方法和实际结构性能之间产生这种差异是由于设计方法中忽略了楼板的薄膜作用。本根据国外有关资料给出了几种简单计算方法,允许在钢结构杭大设计中考虑楼板的薄膜作用。从而可以更精确地评估火灾下建筑物的真实承载能力,在给定的耐火时间内能减少相当数量钢梁的防火保护。  相似文献   

13.
Urban ventilation implies that wind from rural areas may supply relatively clean air into urban canopies and distribute rural air within them to help air exchange and pollutant dilution. This paper experimentally and numerically studied such flows through high-rise square building arrays as the approaching rural wind is parallel to the main streets. The street aspect ratio (building height/street width, H/W) is from 2 to 5.3 and the building area (or packing) density (λp) is 0.25 or 0.4. Wind speed is found to decrease quickly through high-rise building arrays. For neighbourhood-scale building arrays (1-2 km at full scale), the velocity may stop decreasing near leeward street entries due to vertical downward mixing induced by the wake. Strong shear layer exists near canopy roof levels producing three-dimensional (3D) vortexes in the secondary streets and considerable air exchanges across the boundaries with their surroundings. Building height variations may destroy or deviate 3D canyon vortexes and induced downward mean flow in front of taller buildings and upward flow behind taller buildings. With a power-law approaching wind profile, taller building arrays capture more rural air and experience a stronger wind within the urban canopy if the total street length is effectively limited. Wider streets (or smaller λp), and suitable arrangements of building height variations may be good choices to improve the ventilation in high-rise urban areas.  相似文献   

14.
Peatland fires remain a major contributor of environmental problems in Indonesia. Several studies on peat fire suppression have been conducted with multiple methods, such as quarrying, water spray, artificial rain, and foam spray. This research is focused on laboratory scaled experiments of Indonesian peat smoldering fire behaviour and suppression by a water mist system. The peat used in this work was obtained from two different locations, namely Papua and South Sumatra, Indonesia. During the suppression tests, the intensity of the water mist spray was varied by changing the distance between the nozzle and the peat surface. Meanwhile, the time periods of spray were 15 min (short period of suppression) and approximately 2 h for full suppression until the peat fire was extinguished. The peat temperature and the total mass lost during the smoldering reaction were recorded to get the burning rate ratio for each sample. The spread rate of the smoldering process was identified by the changes in the local temperatures of the peat bed. The results show that the spread rate of the smoldering combustion front was affected by particle size and permeability of peat material. The short duration of water suppression failed to extinguish the peat fires. A re-ignition phenomenon was identified due to the persistence of stored heat in the core of the peat. In addition, the total water required to fully suppress both peat fires is about 6 L/kg peat.  相似文献   

15.
Four full-scale fire experiments using 4-door sedan passenger cars were carried out. The cars were ignited either at the splashguard of the right rear wheel or at the left front seat in the passenger compartment with a gasoline spill. The temperature inside the burning car and the mass loss rate were measured. The burning of the 4-door sedan was composed of three compartmental fires: the engine compartment, the passenger compartment, and the rear part inclusive of the fuel. In the experiments where ignition was initiated at the splashguard, the flame spread in the following order: to the rear part of the car, to the passenger compartment, and to the engine compartment. Breakage of the window glass markedly affected the spread of fire into the passenger compartment. The quantity of gasoline in the fuel tank also affected the speed of spread of the fire, because the gasoline ignited at an early stage of the fire. In the experiment where ignition was initiated in the passenger compartment, the fire gained force after the windshield was broken entirely. The flame spread in the following order: to the passenger compartment, to the engine compartment, and to the rear part of the car. The temperature within the passenger compartment peaked at 1000 °C. The heat release rate (HRR) curves showed several peaks depending on the burning of the three compartments. The HRR increased markedly when the fire spread to several different parts of the car at the same time. The HHR peaked at 3 MW when the passenger compartment and fuel (gasoline) burned simultaneously. The measured HRR curves were characterized by superposition of a Boltzmann curve and a Gaussian curve in order to obtain a model, which allowed us to make a more precise prediction of the fire spread probability from a burning car to nearby structures. The HRRs of burning cars were described by the sum of HRR from each compartment.  相似文献   

16.
以长白山黄松蒲林场6 种主要森林类型林地内凋落物为对象,研究长白山林区地表凋落物的燃烧性。在长白山黄松蒲林场的白桦林、针叶混交林、针阔混交林、落叶松林、阔叶混交林和杨树林6 种主要森林类型林地内设置样地,通过外业调查、混合采样的方式收集地表凋落物并进行燃烧实验,测定火蔓延传播的速度、燃烧温度和质量变化。通过改变实验风速、坡度和坡向,研究不同条件对火行为、火蔓延速度和烧损率的影响。实验结果表明:长白山地区地表凋落物的火强度从大到小排序为白桦林、针叶混交林、针阔混交林、落叶松林、阔叶混交林、杨树林,白桦林的火强度最大,为460.23 kW/m,杨树林的火强度最小,为367.09kW/m;风速越大,地表凋落物火蔓延速度越大;风速为6 m/s 时,燃烧过程平均温度最大,烧损率最高,当风速小于2 m/s 或大于8 m/s 时,可燃物无法完全燃尽;上坡火坡度增加时,地表凋落物的火蔓延速度增加,烧损率减小;下坡火坡度增加时,地表凋落物的火蔓延速度减小,烧损率增加。  相似文献   

17.
A number of disastrous incidents have indicated that extreme fires can act as a trigger event to initiate the progressive collapse of reinforced concrete (RC) structures. Hence, research on progressive collapse risks of RC structures under extreme fires is most important. However, limited studies have been undertaken in the fire-induced progressive collapse of tall and super-tall RC buildings. Hence, a high-performance finite element model was developed for this study to simulate the mechanical behavior of RC members in fire-induced progressive collapse. Fiber beam and multi-layer shell elements were used, in conjunction with appropriate material constitutive laws and elemental failure criteria under high temperature conditions. Extreme fire scenarios were also considered, based on the actual fire-induced progressive collapse events of the WTC towers and the Windsor Tower. The simulation results indicated that a progressive collapse of a super-tall building was triggered by the flexural failure of the peripheral columns, approximately 7 h after being exposed to fire. The bending deformations of the peripheral columns increased significantly, due to the outward thermal expansion of the upper floors and the inward contraction of the lower floors, a result of the fire-induced damage. The results also revealed that, when multiple stories are subjected to fire, the internal forces in the components are redistributed in the horizontal and vertical directions by way of the Vierendeel truss mechanism, leading to a maximum increase (of approximately 100%) of the axial forces in the columns. The present work identified the mechanisms of the fire-induced progressive collapse of a typical RC super-tall building, and provided an effective analysis framework for further research on the fire safety of tall and super-tall RC buildings.  相似文献   

18.
Smoke movement in elevator shafts during a high-rise structural fire   总被引:1,自引:0,他引:1  
In high-rise fires, smoke is often the leading cause of fatalities. Therefore, in the event of a fire, the ability to predict the movement of smoke throughout a tall structure is of vital importance. Smoke moves depending on a number of interacting and complex factors including weather conditions, building construction, operation of HVAC equipment, as well as the location and intensity of the fire. Smoke often travels long distances from the fire floor, and in the particular case of a high-rise fire, smoke frequently moves to upper floors via open passages such as elevator shafts and stairwells.  相似文献   

19.
矩形高层建筑横风向风振响应简化计算   总被引:13,自引:0,他引:13       下载免费PDF全文
基于风洞试验数据和随机振动理论,本文提出了矩形高层建筑横风向风振响应简化计算公式,这些简化公式的提出将求高层建筑横风向风振响应的复杂积分变为方便的代数运算。本文应用这些简化公式对大量的矩形高层建筑实例进行了计算、分析。将本文提出的简化公式计算结果与积分计算结果比较,相对误差基本上在5%以内,因此本文提出的公式有较高的精度。用本文简化公式计算得到的高层建筑横风向风振响应与日本建筑荷载规范、加拿大国家建筑规范计算得到的横风向风振响应比较,总体上差异较小。由于本文提出的简化公式所依据的风洞试验模型和数据较为精细,因此本文简化公式有相当高的可靠性与合理性。  相似文献   

20.
The Wind Effect on the Transport and Burning of Firebrands   总被引:1,自引:0,他引:1  
Firebrands, controlling spot fires, are often responsible for fast damages in wildland and urban fires. However, the behaviours of firebrands are difficult to predict. In this study, we conduct experiments in a wind tunnel to investigate the effect of wind on the smouldering burning and transport of firebrands. Three different sizes of disc wood particles (weighing about 1 g) are heated to generate smouldering firebrands, and then blown out by a horizontal wind of 5 or 7 m/s. In each experiment the transport distance (in the order of 1 m) and mass loss of firebrands are measured to examine their burning behaviours. For the first time, a bimodal distribution (burning and extinction modals) is observed for small firebrands under certain wind speeds (firebrands of 12-mm diameter and 5-mm thickness under a wind speed of 7 m/s in this work). Both the firebrand transport distance and mass loss in the extinction modal are smaller than those in the burning modal. The heat transfer analysis shows that there is a critical wind speed to quench the firebrand and produce a bimodal distribution, and its value increases with both the particle size and the heating duration. The predicted critical wind speed agrees well with experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号