首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
布局问题研究物体的布局先后或布局定位以满足设计要求,布局迁移设计是在已有布局基础上高效设计新布局的方法。在轨道交通自动控制系统中,闸机表面传感器的布局对人与物的识别有重要的影响。为了实现闸机在不同地域环境中的快速设计,首先以闸机布局中的传感器作为研究对象,进行基元划分,提出了多种基元类型;并分析了基于拓扑结构的基元迁移变换方法,研究了人群特征因素、机械结构约束的数学表达;然后提出基于包围圆搜索的基元运动与干涉分析算法,其参数能够根据求解精度进行自适应调整;并利用多目标归一化函数对各基元的解进行择优,以获取最终布局。最后以18对传感器的闸机布局设计为例进行实例分析,应用此方法并借助于Visual Basic可视化编译平台,实现了闸机在不同地域环境中的传感器布局快速设计。  相似文献   

2.
Three-dimensional object recognition on range data and 3D point clouds is becoming more important nowadays. Since many real objects have a shape that could be approximated by simple primitives, robust pattern recognition can be used to search for primitive models. For example, the Hough transform is a well-known technique which is largely adopted in 2D image space. In this paper, we systematically analyze different probabilistic/randomized Hough transform algorithms for spherical object detection in dense point clouds. In particular, we study and compare four variants which are characterized by the number of points drawn together for surface computation into the parametric space and we formally discuss their models. We also propose a new method that combines the advantages of both single-point and multi-point approaches for a faster and more accurate detection. The methods are tested on synthetic and real datasets.  相似文献   

3.
The discovery of meaningful parts of a shape is required for many geometry processing applications, such as parameterization, shape correspondence, and animation. It is natural to consider primitives such as spheres, cylinders and cones as the building blocks of shapes, and thus to discover parts by fitting such primitives to a given surface. This approach, however, will break down if primitive parts have undergone almost‐isometric deformations, as is the case, for example, for articulated human models. We suggest that parts can be discovered instead by finding intrinsic primitives, which we define as parts that posses an approximate intrinsic symmetry. We employ the recently‐developed method of computing discrete approximate Killing vector fields (AKVFs) to discover intrinsic primitives by investigating the relationship between the AKVFs of a composite object and the AKVFs of its parts. We show how to leverage this relationship with a standard clustering method to extract k intrinsic primitives and remaining asymmetric parts of a shape for a given k. We demonstrate the value of this approach for identifying the prominent symmetry generators of the parts of a given shape. Additionally, we show how our method can be modified slightly to segment an entire surface without marking asymmetric connecting regions and compare this approach to state‐of‐the‐art methods using the Princeton Segmentation Benchmark.  相似文献   

4.
3D local shapes are a critical cue for object recognition in 3D point clouds. This paper presents an instance-based 3D object recognition method via informative and discriminative shape primitives. We propose a shape primitive model that measures geometrical informativity and discriminativity of 3D local shapes of an object. Discriminative shape primitives of the object are extracted automatically by model parameter optimization. We achieve object recognition from 2.5/3D scenes via shape primitive classification and recover the 3D poses of the identified objects simultaneously. The effectiveness and the robustness of the proposed method were verified on popular instance-based 3D object recognition datasets. The experimental results show that the proposed method outperforms some existing instance-based 3D object recognition pipelines in the presence of noise, varying resolutions, clutter and occlusion.  相似文献   

5.
6.
In our experience, mesh‐cutting methods can be distinguished by how their solutions address the following major issues: definition of the cut path, primitive removal and re‐meshing, number of new primitives created, when re‐meshing is performed, and representation of the cutting tool. Many researches have developed schemes for interactive mesh cutting with the goals of reducing the number of new primitives created, creating new primitives with good aspect ratios, avoiding a disconnected mesh structure between primitives in the cut path, and representing the path traversed by the tool as accurately as possible. The goal of this paper is to explain how, by using a very simple framework, one can build a generalized cutting scheme. This method allows for any arbitrary cut to be made within a virtual object, and can simulate cutting surface, layered surface or tetrahedral objects using a virtual scalpel, scissors, or loop cautery tool. This method has been implemented in a real‐time, haptic‐rate surgical simulation system allowing arbitrary cuts to be made on high‐resolution patient‐specific models. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

7.
语义分割是遥感影像分析中的重要技术之一。现有的方法(如基于深度卷积神经网络的方法等)虽然在语义分割中取得了显著进展,但往往需要大量训练数据。基于图模型的马尔可夫随机场模型(Markov random field model,MRF)提出了一种不依赖训练数据的无监督语义分割思路,可以有效地刻画地物空间关系,并对地物空间分布的统计规律进行建模。但现有的MRF模型方法通常建立在基于像素或对象的单一粒度基元上,难以充分利用影像信息,语义分割效果不佳。针对上述问题,引入交替方向乘子法 (alternative direction method of multiplier,ADMM)并将其离散化,提出了一种像素与对象基元协同的MRF模型无监督语义分割方法(MRF-ADMM)。首先构建像素基元和对象基元两个概率图,其中像素基元概率图用于刻画影像的细节信息,保持语义分割的边界;对象基元概率图用于描述较大范围的空间关系,以应对遥感影像地物内部的高异质性,使分割结果中地物内部具有良好的区域完整性。在模型求解过程中,针对像素和对象基元的特点,提出了一种离散化的ADMM方法,并将其用于两种基元类别标记的传递与更新,实现像素基元细节信息和对象基元区域信息的协同优化。高分二号和航拍影像等不同数据库不同类型遥感影像的语义分割实验结果表明,相较于现有的MRF模型,提出的MRF-ADMM方法能有效地协同不同粒度基元的优点,优化语义分割结果。  相似文献   

8.
Volume-preserving free-form solids   总被引:1,自引:0,他引:1  
Some important trends in geometric modeling are the reliance on solid models rather than surface-based models and the enhancement of the expressive power of models, by using free-form objects in addition to the usual geometric primitives and by incorporating physical principles. An additional trend is the emphasis on interactive performance. In this paper, we integrate all of these requirements into a single geometric primitive by endowing the tri-variate tensor-product free-form solid with several important physical properties, including volume and internal deformation energy. Volume preservation is of benefit in several application areas of geometric modeling, including computer animation, industrial design and mechanical engineering. However, previous physics-based methods, which have usually used some form of “energy”, have neglected the issue of volume (or area) preservation. We present a novel method for modeling an object composed of several tensor-product solids while preserving the desired volume of each primitive and ensuring high-order continuity constraints between the primitives. The method utilizes the Uzawa algorithm for non-linear optimization, with objective functions based on deformation energy or least squares. We show how the algorithm can be used in an interactive environment by relaxing exactness requirements while the user interactively manipulates free-form solid primitives. On current workstations, the algorithm runs in real-time for tri-quadratic volumes and close to real-time for tri-cubic volumes  相似文献   

9.
10.
几何哈希法,作为一种有效的模型搜索算法,在物体识别中有着重要的应用。现有的几何哈希法仅适合于仿射变换下的二维景物识别,论文提出了适合透视投影变换下三维物体识别的几何哈希方法。该方法利用物体的三维形态和物体中具有射影不变量的几何约束结构来构造哈希表。一方面,几何约束结构提供了物体模型的索引功能;另一方面,物体的三维形态提供了物体成像位姿的有关信息,使后续的匹配验证得以简化。实验中使用人造物体对该方法进行了验证,实验表明该方法正确有效。  相似文献   

11.
3D reconstruction of arbitrary free-formed objects is an important and challenging problem in computer vision. In this paper, we first discuss the importance of primitive selection in 3D reconstruction. Subsequently, a theorem, which reveals the perspective invariance of NURBS, is shown, making it a good choice as primitive in 3D reconstruction. Consequently, based on this theorem a new paradigm of free-formed line-like object reconstruction using NURBS as primitives is proposed. Furthermore, an approach for determining weights for 3D NURBS is presented, and the width effect of curved line-like objects is analyzed. Finally, experiments with line-like objects and machine part demonstrate the feasibility of our approach and prove the superiority of our approach over the point- or segment-based approaches as well as the B-spline-based reconstruction approach in terms of robustness and accuracy.  相似文献   

12.
Hierarchical mesh segmentation based on fitting primitives   总被引:11,自引:0,他引:11  
In this paper, we describe a hierarchical face clustering algorithm for triangle meshes based on fitting primitives belonging to an arbitrary set. The method proposed is completely automatic, and generates a binary tree of clusters, each of which is fitted by one of the primitives employed. Initially, each triangle represents a single cluster; at every iteration, all the pairs of adjacent clusters are considered, and the one that can be better approximated by one of the primitives forms a new single cluster. The approximation error is evaluated using the same metric for all the primitives, so that it makes sense to choose which is the most suitable primitive to approximate the set of triangles in a cluster. Based on this approach, we have implemented a prototype that uses planes, spheres and cylinders, and have experimented that for meshes made of 100 K faces, the whole binary tree of clusters can be built in about 8 s on a standard PC. The framework described here has natural application in reverse engineering processes, but it has also been tested for surface denoising, feature recovery and character skinning.  相似文献   

13.
Color is one of salient features for color object recognition, however, the colors of object images sensitively depend on scene illumination. To overcome the lighting dependency problem, a color constancy or color normalization method has to be used. This paper presents a color image normalization method, called eigencolor normalization, which consists of two phases as follows. First, the compacting method, which was originally used for compensating the adverse effect due to shape distortion for 2-D planar objects, is exploited for 3-D color space to make the color distribution less correlated and more compact. Second, the compact color image is further normalized by rotating the histogram to align with the reference axis computed. Consequently, the object colors are transformed into a new color space, called eigencolor space, which reflects the inherent colors of the object and is more invariant to illumination changes. Experimental results show that our eigencolor normalization method is superior to other existing color constancy or color normalization schemes on achieving more accurate color object recognition.  相似文献   

14.
A method of matching labeled point patterns is described on the basis of a fuzzy relaxation. The method is applicable to labeled point patterns which differ by geometrical transformations, such as translation, rotation and scale change. In this method, the point pairs are considered to be the pattern primitives. The pattern primitives are geometrically transformed in the process of relaxation so as to minimize a measure of mismatch between the primitive pairs. The compatible primitive pairs between the two labeled point patterns are established after only a few iterations of relaxation and the corresponding points are obtained from the primitive pairs. As an example, the method is applied to the matching of constellations.  相似文献   

15.
16.
Modern software oriented symmetric ciphers have become a key feature in utilizing word-oriented cryptographic primitives.Using the output sequence,in the order of its generation,of a word-oriented cryptographic primitive in the same way as traditional bit-oriented primitives,we can expose the intrinsic weakness of these primitives,especially for word-oriented linear feedback shift registers,T-functions,and so on.Two new methods for using word-oriented cryptographic primitives are presented in this paper,that is,the extracted state method and cascading extracted coordinate method.Using a T-function as an example,we research the different cryptographic properties of the output sequences of the original method and the two proposed methods,focusing mainly on period,linear complexity,and k-error linear complexity.Our conclusions show that the proposed methods could enhance at low cost the cryptographic properties of the output sequence.As a result,since the new methods are simple and easy to implement,they could be used to design new word-oriented cryptographic primitives.  相似文献   

17.
This paper deals with modeling heterogeneous volumetric objects as point sets with attributes using trivariate B-splines. In contrast to homogeneous volumes with uniform distribution of material and other properties, a heterogeneous volumetric object has a number of variable attributes assigned at each point. An attribute is a mathematical model of an object property of an arbitrary nature (material, photometric, physical, statistical, etc.). In our approach, the function representation (FRep) is used as the basic model for both object geometry and attributes represented independently using real-valued scalar functions of point coordinates. While FRep directly defines object geometry, for an attribute it specifies a space partition used to define the attribute function. We propose a volume sculpting scheme with multiresolution capability based on trivariate B-spline functions to define both object geometry and its attributes. A new trivariate B-spline primitive is proposed that can be used as a leaf in an FRep constructive tree. An interactive volume modeler based on trivariate B-splines and other simple primitives is described, with a real-time repolygonization of the surface during modeling. We illustrate that the space partition obtained in the modeling process can be applied to define attributes for the objects with an arbitrary geometry model such as BRep or homogeneous volume models.  相似文献   

18.
We present a method for autonomous learning of dextrous manipulation skills with multifingered robot hands. We use heuristics derived from observations made on human hands to reduce the degrees of freedom of the task and make learning tractable. Our approach consists of learning and storing a few basic manipulation primitives for a few prototypical objects and then using an associative memory to obtain the required parameters for new objects and/or manipulations. The parameter space of the robot is searched using a modified version of the evolution strategy, which is robust to the noise normally present in real-world complex robotic tasks. Given the difficulty of modeling and simulating accurately the interactions of multiple fingers and an object, and to ensure that the learned skills are applicable in the real world, our system does not rely on simulation; all the experimentation is performed by a physical robot, in this case the 16-degree-of-freedom Utah/MIT hand. Experimental results show that accurate dextrous manipulation skills can be learned by the robot in a short period of time. We also show the application of the learned primitives to perform an assembly task and how the primitives generalize to objects that are different from those used during the learning phase.  相似文献   

19.
Fuentes  Olac  Nelson  Randal C. 《Machine Learning》1998,31(1-3):223-237
We present a method for autonomous learning of dextrous manipulation skills with multifingered robot hands. We use heuristics derived from observations made on human hands to reduce the degrees of freedom of the task and make learning tractable. Our approach consists of learning and storing a few basic manipulation primitives for a few prototypical objects and then using an associative memory to obtain the required parameters for new objects and/or manipulations. The parameter space of the robot is searched using a modified version of the evolution strategy, which is robust to the noise normally present in real-world complex robotic tasks. Given the difficulty of modeling and simulating accurately the interactions of multiple fingers and an object, and to ensure that the learned skills are applicable in the real world, our system does not rely on simulation; all the experimentation is performed by a physical robot, in this case the 16-degree-of-freedom Utah/MIT hand. E xperimental results show that accurate dextrous manipulation skills can be learned by the robot in a short period of time. We also show the application of the learned primitives to perform an assembly task and how the primitives generalize to objects that are different from those used during the learning phase.  相似文献   

20.
The common method for generating the octrees of complex objects, is based upon generating the octrees of several pre-defined primitives and applying Boolean operations on them. Regardless how the octrees representing the primitives are generated (top-down or bottom-up) the octree of a desired object is obtained by performing Boolean operations among the primitives comprising the object according to the object's CSG (constructive solid Geometry) representation. When carrying out this procedure, most of the computing and memory resources are used for generating and storing the octants comprising the primitives. However, the majority of those octants are not required for the representation of the final object. In this paper the extention of the top-down approach to the CSG level (i.e., generating the octree of an object directly from its CSG representation) is proposed. With this method there is no need to generate the octrees of the primitives comprising the object nor to perform Boolean operations on them. Moreover, only these octants which belong to the final object are generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号