首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the suitability of marine origin coral species, Porites lutea (POR) and the hydrozoan Millepora dichotoma (MIL), for use as novel three dimensional growth matrices in the field of articular cartilage tissue engineering. Therefore, mesenchymal stem cells (MSCs) and chondrocytes were grown on the skeletal material obtained from each of these two organisms to investigate their potential use as three dimensional scaffolding for cartilage tissue growth. Chondrogenic induction of MSCs was achieved by addition of transforming growth factor-β1 (TGF-β1) and insulin growth factor-I (IGF-I). Cell adherence, proliferation, differentiation and tissue development were investigated through six weeks of culture. Cartilage tissue growth and chondrocytic phenotype maintenance of each cell type were examined by cell morphology, histochemical analyses, expression of collagen type II and quantitative measures of glycosaminoglycan (GAG) content. The MSCs and the chondrocytes were shown good adherence to the scaffolds and maintenance of the chondrocytic phenotype in the initial stages of culture. However after two weeks of culture on MIL and three weeks on POR these cultures began to exhibit signs of further differentiation and phenotypic loss. The shown results indicated that POR was a better substrate for chondrocytes phenotype maintenance than MIL. We believe that surface modification of POR combined with mechanical stimuli will provide a suitable environment for chondrogenic phenotype maintenance. Further investigation of POR and other novel coralline biomatrices is indicated and warranted in the field of cartilage tissue engineering applications.  相似文献   

2.
Utilizing biomaterials to regulate the phenotype and proliferation of chondrocytes is a promising approach for effective cartilage tissue regeneration. Recently, a significant amount of effort has been invested into directing chondrocytes toward a desired location and function by utilizing biomaterials to control the dedifferentiation and phenotypic loss of chondrocytes during in vitro monolayer culture. Here, the transmission signals resulting from tetrahedral DNA nanostructures (TDNs) in the regulation of chondrocyte phenotype and proliferation are exploited. TDNs, new DNA nanomaterials, have been considered as promising materials in biomedical fields. Upon exposure to TDNs, chondrocyte phenotype is significantly enhanced, accompanied by lower gene expression related to Notch signaling pathway and higher expression of type II collagen. In addition, the cell proliferation and morphology of chondrocytes are changed after exposure to TDNs. In conclusion, this work demonstrates that TDNs are potentially useful mechanism in cartilage tissue regeneration from chondrocytes, whereby chondrocyte phenotype and proliferation can be retained.  相似文献   

3.
Structure of P(EMA-co-HEA)/SiO2 nanocomposites with silica content in the range from 0 to 30 wt.% was correlated with cell behavior on substrates of those compositions by making use of two different populations of primary human cells: articular cartilage chondrocytes and dental pulp cells. Substrates were prepared by the simultaneous copolymerization of the organic monomers and the sol–gel reaction of the silica precursor in different proportions, which led to weight fractions of the silica phase in the materials closely matching the stoichiometric ratios employed during the preparation, both in the bulk and at the material surface. The silica nanophase increases surface wettability and improves the mechanical properties of the base materials. Both chondrocytes and dental pulp cells were cultured on serum-coated nanocomposite substrates in the same conditions, but very different cellular responses were obtained. While chondrocytes adhered and proliferated, dental pulp cells formed viable aggregates weakly adhered on the sample that were viable up to 11 days. The results suggest that these sol–gel derived nancomposites may be used as culture surfaces maintaining the dental pulp cell phenotype in vitro.  相似文献   

4.
Successful articular cartilage resurfacing must overcome several problems: the implant must easily fit the defect, it must be stable within the defect before full incorporation of repair tissue has occurred, and the reparative tissue must closely approximate the structure of normal hyaline cartilage. To this end, several natural and synthetic components have been used, both in vivo and in vitro, to provide a scaffold. These include isolated chondrocyte allografts, intact cartilage allografts, periossteal grafts, reconstructed collagen sponges, hydrogels and carbon fibres. However, promising results have been reported using three dimensional scaffolds in culture with isolated chondrocytes with subsequent implantation. This preliminary in vitro study utilizes Gelfoam® (a purified gelatin sponge) as such a scaffold. The biocompatibility of Gelfoam with both chondrocytes and osteoblast cells was first confirmed. The ability of chondrocytes to replicate and differentiate within Gelfoam scaffolds was assessed biochemically by measurement of the DNA content and glycosaminoglycans (GAG) production over 25 days in culture. The distribution of the cartilagenous matrix produced was observed by light microscopy, and the constituents of this matrix were assessed using specific antibodies and immunolocalization.  相似文献   

5.
Cartilage engineering consists of re-constructing functional cartilage by seeding chondrocytes in suitable biomaterials in vitro. The characteristics of neocartilage differ upon the type of biomaterial chosen. This study aims at determining the appropriate scaffold material for articular cartilage reconstruction using non articular chondrocytes harvested from rat sternum. For this purpose, the use of polysaccharide hydrogels such as alginate (AA) and hyaluronic acid (HA) was investigated. Several ratios of AA/HA were used as well as three derivatives obtained by chemical modification of HA (HA-C18, HA-C122.3, HA-C122.5-TEG0.5). Sternal chondrocytes were successfully cultured in 3D alginate and alginate/HA scaffolds. HA retention in alginate beads was found to be higher in beads seeded with cells than in beads without cells. HA-C18 improved HA retention in beads but inhibited the chondrocyte synthesis process. Cell proliferation and metabolism were enhanced in all biomaterials when beads were mechanically agitated. Preliminary results have shown that the chondrocyte neo-synthesised matrix had acquired articular characteristics after 21 days culture.  相似文献   

6.
Tissue engineering with chondrogenic cell based therapies is an expanding field with the intention of treating cartilage defects. It has been suggested that scaffolds used in cartilage tissue engineering influence cellular behavior and thus the long-term clinical outcome. The objective of this study was to assess whether chondrocyte attachment, proliferation and post-expansion re-differentiation could be influenced by the size of the fibers presented to the cells in a scaffold. Polylactic acid (PLA) scaffolds with different fiber morphologies were produced, i.e. microfiber (MS) scaffolds as well as nanofiber-coated microfiber scaffold (NMS). Adult human articular chondrocytes were cultured in the scaffolds in vitro up to 28 days, and the resulting constructs were assessed histologically, immunohistochemically, and biochemically. Attachment of cells and serum proteins to the scaffolds was affected by the architecture. The results point toward nano-patterning onto the microfibers influencing proliferation of the chondrocytes, and the overall 3D environment having a greater influence on the re-differentiation. In the efforts of finding the optimal scaffold for cartilage tissue engineering, studies as the current contribute to the knowledge of how to affect and control chondrocytes behavior.  相似文献   

7.
Tissue engineering of articular cartilage in order to restore the function of degenerated, diarthrodial joints is currently widely under investigation. The results obtained thus far indicate that proper control of the differentiation of the cells used for this purpose is essential to produce and maintain a hyaline-like matrix. In this study, a procedure is described by which differentiation of chondrocytes in vitro and ex vivo can be studied. The method involves quantitative assessment of mRNA for different collagens, which are markers for differentiation of chondrocytes, by competitive PCR. In a culture system employing human osteoarthritic chondrocytes, mRNAs for the 1-chains of collagen types I, II and X are quantified. The procedure is fast, specific and sensitive. However, several controls should be included to ascertain the reliability of the assessment. © 1998 Kluwer Academic Publishers  相似文献   

8.
A novel crosslinking method with directly crosslinking the gelatin gel, being cut to a disc of chosen size beforehand, for the fabrication of porous gelatin scaffold was proposed. This novel method of gel-crosslinking was compared with the traditional methods of mixing-crosslinking and scaffold-crosslinking. The structure of the scaffold fabricated by the gel-crosslinking method shows uniformly distributed and interconnected pores which can be much smaller than those made by the other two methods. All three methods have the last step as freeze-drying; nevertheless, freeze-drying once more will increase the uniformity of the structure and the interconnecting pores. Crosslinking of gelatin was carried out at room temperature with glutaraldehyde (GTA) or genipin (GP). In vitro cell culture of Wistar rat's joint chondrocytes demonstrates that the GTA-crosslinked scaffold is much worse than the GP-crosslinked one; a tissue containing collagen and glycosaminoglycan was produced in the GP-crosslinked scaffold in just 9 days after cell seeding, and a tissue with a cell distribution resembling that of the native cartilage was developed after 30 day cell culture. It was concluded that the novel method is feasible for application in articular cartilage tissue engineering.  相似文献   

9.
A novel ceramic–gelatin assembly (CGA) has been designed as an osteochondral scaffold for articular cartilage repair. The CGA scaffold consists of four layers, that is, a porous ceramic layer as osseous component and also as anchor, a dense ceramic layer to prevent blood vessel penetration and also to stand shear stress, a porous ceramic layer for fixation of bone to cartilage, i.e. for joining the ceramic part to the porous gelatin layer, the latter being used as cartilaginous component. The joining was done by the infiltration of gelatin solution into the porous ceramic layer, gelling and crosslinking. This CGA scaffold can offer solutions to the so-far not satisfactorily resolved issues of the osteochondral scaffold, i.e. anchoring, blood vessel penetration, shear stress distribution during articular joint motion, and enough strength to join the cartilaginous component to the osseous component to prevent delamination. This novel scaffold was tested by in vitro cell culture with Wistar rat's joint chondrocytes. DNA assay, GAGs assay, RT-PCR, and histological evaluations with hematoxylin–eosin and Safranin-O staining were carried out to show that cartilage tissue can be developed in four weeks.  相似文献   

10.
11.
A protein based 3D porous scaffold is fabricated by blending gelatin and albumin. The biomimetic biodegradable gelatin, promoted good cell adhesion and its hydrophilic nature enabled absorption of culture media. Albumin is proposed to serve as a nontoxic foaming agent and also helped to attain a hydrophobic-hydrophilic balance. The hydrophobic-hydrophilic balance and appropriate crosslinking of the scaffold avoided extensive swelling, as well as retained the stability of scaffold in culture medium for long period. The scaffold is found to be highly porous with open interconnected pores. The adequate swelling and mechanical property of the scaffold helped to withstand the loads imparted by the cells during in vitro culture. The scaffold served as a nontoxic material to monolayer of fibroblast cells and is found to be cell compatible. The suitability of scaffold for chondrocyte culture and stem cell differentiation to chondrocytes is further explored in this work. The scaffold provided appropriate environment for chondrocyte culture, resulting in deposition of cartilage specific matrix molecules that completely masked the pores of the porous scaffold. The scaffold promoted the proliferation and differentiation of mesenchymal stem cells to chondrocytes in presence of growth factors. The transforming growth factor, TGFbeta3 promoted better chondrogenic differentiation than its isoform TGFbeta1 in this scaffold.  相似文献   

12.
The healing of expanded polytetrafluoroethylene (e-PTFE) in articular cartilage and bone was studied. A 1×4 mm osteo-chondral defect was created in the medial femoral condyle in 10 rabbits (20 knee-joints). A correspondingly broad strip of e-PTFE was placed in the defects and pulled through two drilled channels to the dorso-lateral side of the condyle. The contra-lateral knee-joint served as control. The animals were not immobilized and allowed to move about freely together in a room. The animals were killed by perfusion fixation after 14 months, the implants and tissues retrieved en bloc and examined with scanning electron microscopy (SEM) and light microscopic (LM) morphometry. No macroscopic signs of inflammation were detected in the knee-joints. Observations with SEM in control joints showed that the articular surface ranged from smooth to irregular with superficial crevices and fibrillations at the site of the defect. The smooth articular surface of the surrounding articular cartilage partly overlapped the e-PTFE membrane. The surface of the e-PTFE membrane had a nodular character and was surrounded by fibrocartilage with clusters of chondrocytes. A consistentobservation was the large amount of bone around and in direct contact with the surface of e-PTFE membrane. LM morphometry of intace e-PTFE-tissue specimens in three different section planes showed that 73.1% and 8.8% of the implant surface was in contact with bone and bone marrow, respectively. Our morphological observations of e-PTFE in the cartilage and bone of the rabbit knee-joint after a 14-months healing period indicate that e-PTFE could be a useful material in reconstructive surgery of smaller non-weight-bearing joints.  相似文献   

13.
Cartilage serves as a low-friction and wear-resistant articulating surface in diarthrodial joints and is also important during early stages of bone remodeling. Recently, regenerative cartilage research has focused on combinations of cells paired with scaffolds. Superhydrophilic vertically aligned carbon nanotubes (VACNTs) are of particular interest in regenerative medicine. The aim of this study is to evaluate cell expansion of human articular chondrocytes on superhydrophilic VACNTs, as well as their morphology and gene expression. VACNT films were produced using a microwave plasma chamber on Ti substrates and submitted to an O2 plasma treatment to make them superhydrophilic. Human chondrocytes were cultivated on superhydrophilic VACNTs up to five days. Quantitative RT-PCR was performed to measure type I and type II Collagen, Sox9, and Aggrecan mRNA expression levels. The morphology was analyzed by scanning electron microscopy (SEM) and confocal microscopy. SEM images demonstrated that superhydrophilic VACNTs permit cell growth and adhesion of human chondrocytes. The chondrocytes had an elongated morphology with some prolongations. Chondrocytes cultivated on superhydrophilic VACNTs maintain the level expression of Aggrecan, Sox9, and Collagen II determined by qPCR. This study was the first to indicate that superhydrophilic VACNTs may be used as an efficient scaffold for cartilage or bone repair.  相似文献   

14.
Cartilage extracellular matrix (ECM) is composed primarily of type II collagen (COL II) and large, networks of proteoglycans (PGs) that contain glycosaminoglycans such as hyaluronic acid (HA) and chondroitin sulfate (CS). Since cartilage shows little tendency for self-repair, injuries are kept unhealed for years and can eventually lead to further degeneration. During the past decades, many investigations have pursued techniques to stimulate articular cartilage repair or regeneration. The current study assessed the effects of exogenous glycosaminoglycans (GAGs) including CS-A, CS-B, CS-C, heparan sulfate and HA, administration on human chondrocytes in terms of proliferation and matrix synthesis, while the cells were seeded and grown on the genipin-crosslinked collagen type II (COL II) scaffold. DNA content was measured by Hoechst dye intercalation, matrix deposition was evaluated by DMMB dye. Expression of collagen II and aggrecan mRNAs was assessed by RT-PCR, followed by gel electrophoresis. In a 28-day in vitro culture, administration of 5 μg/ml CS-A, 50 μg/ml CS-B, 50 μg/ml CS-C, 5 μg/ml HS, and 500 kDa HA led to significant increase in biosynthesis rate of PGs. Gene expression of aggrecan and collagen II were upregulated by CS-A, CS-C and HA. These results showed considerable relevance of GAGs to the issue of in vitro/ex vivo neo-cartilage synthesis for tissue engineering and regenerative medical applications.  相似文献   

15.
Hydrogels are suitable matrices for cartilage tissue engineering on account of their resemblance to native extracellular matrix of articular cartilage and also considering its ease of application, they can be delivered to the defect site in a minimally invasive manner. In this study, we evaluate the suitability of a fast gelling natural biopolymer hydrogel matrix for articular cartilage tissue engineering. A hydrogel based on two natural polymers, chitosan and hyaluronic acid derivative was prepared and physicochemically characterized. Chondrocytes were then encapsulated within the hydrogel and cultured over a period of one month. Cartilage regeneration was assessed by histological, biochemical and gene expression studies. Chondrocytes maintained typical round morphology throughout the course of this investigation, indicating preservation of their phenotype with sufficient production of extracellular matrix and expression of typical chondrogenic markers Collagen type 2 and aggrecan. The results suggest that the natural polymer hydrogel matrix can be used as an efficient matrix for articular cartilage tissue engineering.  相似文献   

16.
The network structure of a three-dimensional hydrogel scaffold dominates its performance such as mechanical strength, mass transport capacity, degradation rate and subsequent cellular behavior. The hydrogels scaffolds with interpenetrating polymeric network (IPN) structure have an advantage over the individual component gels and could simulate partly the structure of native extracellular matrix of cartilage tissue. In this study, to develop perfect cartilage tissue engineering scaffolds, IPN hydrogels of collagen/chondroitin sulfate/hyaluronan were prepared via two simultaneous processes of collagen self-assembly and cross linking polymerization of chondroitin sulfate-methacrylate (CSMA) and hyaluronic acid-methacrylate. The degradation rate, swelling performance and compressive modulus of IPN hydrogels could be adjusted by varying the degree of methacrylation of CSMA. The results of proliferation and fluorescence staining of rabbit articular chondrocytes in vitro culture demonstrated that the IPN hydrogels possessed good cytocompatibility. Furthermore, the IPN hydrogels could upregulate cartilage-specific gene expression and promote the chondrocytes secreting glycosaminoglycan and collagen II. These results suggested that IPN hydrogels might serve as promising hydrogel scaffolds for cartilage tissue engineering.  相似文献   

17.
Silkworm and spider silk scaffolds for chondrocyte support   总被引:2,自引:0,他引:2  
Objective To create scaffolds with silkworm cocoon, spider egg sac and spider dragline silk fibres and examine their use for chondrocyte attachment and support. Methods Three different kinds of scaffolds were developed with Bombyx mori cocoon, Araneus diadematus egg sac and dragline silk fibres. The attachment of human articular cartilage cells were investigated on these bioprotein matrices. The chondrocytes produced an extracellular matrix which was studied by immunostaining. Moreover, the compression behaviour in relation to the porosity was studied. Results The compression modulus of a silkworm silk scaffold was related to its porosity. Chondrocytes were able to attach and to grow on the different fibres and in the scaffolds for several weeks while producing extracellular matrix products. Conclusion Porous scaffolds can be made out of silkworm and spider silk for cartilage regeneration. Mechanical properties are related to porosity and pore size of the construct. Cell spreading and cell expression depended on the porosity and pore-size.  相似文献   

18.
Cartilage lacks the ability to regenerate structural defects. Therefore, autologous grafting has been used routinely to replace cartilaginous lesions. Because tissue engineering of human cartilage with the help of bioresorbable polymer scaffolds is possible in experimental models, the demand for the clinical application grows. In this study we present an analysis of the behavior of transplants made of human chondrocyte pools, agarose and the resorbable polymer scaffold Ethisorb and a preliminary comparison with transplants made of single patients' cells and Ethisorb but without the additional ingredient agarose. Chondrocytes were isolated from the matrix of human septal cartilage by enzymatic digestion. The pool cells were kept in monolayer culture for 2 weeks, the single patients' cells for 3–4 weeks. Chondrocyte pools were suspended in agarose and seeded into the resorbable polymer scaffold Ethisorb. Single patients' cells were seeded without agarose. All cell–polymer constructs were kept in perfusion culture for 10–14 days and transplanted subcutaneously into thymusaplastic nude mice. Additionally we implanted Ethisorb fleeces embedded in agarose without chondrocytes. After 6, 12 and 24 weeks the animals were sacrificed and the specimens were explanted and analyzed histochemically and immunohistochemically. Polymer scaffolds not seeded with chondrocytes did not show cartilage formation. Resorption was complete after 12 weeks in vivo. Transplants from cell pools remained mechanically stable over 24 weeks apart from four transplants that were resorbed completely. Cartilage formation was observed in all pool-specimens with the presence of chondronic structures and a homogeneous matrix containing hyaline cartilage-specific matrix molecules such as collagen type II. Single patients' transplants showed hyaline cartilage matrix synthesis and mechanical stability as well. Chondrocyte pools are a suitable method to study cartilage engineering of human cells in vitro and in vivo in experimental models. Under clinical conditions it is, however, necessary to study the generation of cartilage from single patients' cells. We showed that it is possible without additional ingredients such as agarose. However, variations in the preliminary results show that the clinical application with human cells is more difficult than one would expect when using human chondrocyte pools. Further studies need to be performed to find out which individual factors influence the in vitro engineered cartilage's fate in vivo. © 1999 Kluwer Academic Publishers  相似文献   

19.
A polymer system based on room temperature polymerising poly (ethylmethacrylate) polymer powder and tetrahydrofurfuryl monomer has been investigated as a biomaterial for encouraging articular cartilage repair. This heterocyclic methacrylate polymer system swells slightly in situ and thus provides a good interface with subchondral bone resulting in mechanical stability with favourable uptake kinetics. Another feature of this polymer system is that it exhibits high water uptake which leads to absorption of the surrounding tissue fluid and matrix proteins, including growth factors; this may encourage the formation of new cartilage. Three weeks after implantation the tissue overgrowth contained cartilage components: chondrocytes, collagen type II, chondroitin 4-sulphate and chondroitin 6-sulphate. In addition numerous chondrocyte clones were observed at the edge of the defect and in the newly repaired tissue. By six weeks a superficial articulating surface was continuous with the normal articular cartilage with underlying tissue which showed some evidence of endochondral ossification. By nine weeks the surface covering of new cartilage had a widened and an irregular zone of calcified cartilage with thickened subchondral bone was present. At eight months the resurfaced cartilage remained intact above a remodelled subchondral bone end plate.  相似文献   

20.
Articular cartilage defects do not heal. Biodegradable scaffolds have been studied for cartilage engineering in order to implant autologous chondrocytes and help cartilage repair. We tested some new collagen matrices differing in collagen type, origin, structure and methods of extraction and purification, and compared the behavior of human chondrocytes cultured on them. Human chondrocytes were grown for three weeks on four different equine type I collagen matrices, one type I, III porcine collagen matrix and one porcine type II collagen matrix. After 21 days, samples were subjected to histochemical, immunohistochemical and histomorphometric analysis to study phenotype expression and cell adhesion. At 7, 14 and 21 days cell proliferation was studied by incorporation of [3H]-thymidine. Our data evidence that the collagen type influences cell morphology, adhesion and growth; indeed, cellularity and rate of proliferation were significantly higher and cells were rounder on the collagen II matrix than on either of the collagen I matrices. Among the collagen I matrices, we observed a great variability in terms of cell adhesion and proliferation. The present study allowed us to identify one type I collagen matrix and one type II collagen matrix that could be usefully employed as a scaffold for chondrocyte transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号