共查询到20条相似文献,搜索用时 0 毫秒
1.
《Intermetallics》2014
Ni49.4Ti38.6Hf12 shape memory alloy has been characterized for structure, microstructure and transformation temperatures. The microstructure of the as-cast sample consists of B19′ and R-phases, and (Ti,Hf)2Ni precipitate phase along the grain boundaries in the form of dendrites. The microstructure of the solution treated sample contains only B19′ martensite phase, whereas a second heat treatment after solutionizing results in reappearance of the R-phase and the (Ti,Hf)2Ni grain boundary precipitate phase in the microstructure. A detailed microstructural examination shows the presence of precipitates having both coherent and incoherent interface with the matrix, the type of interface being dictated by the crystallographic orientation of the matrix phase. The present study shows that the (Ti,Hf)2Ni precipitates having coherent interface with the matrix, drive the formation of the R-phase in the microstructure. 相似文献
2.
《Intermetallics》2014
This paper reports the tensile deformation behaviour of near-equiatomic NiTi plates with circular, elliptical and square holes. The investigation is done both experimentally and by mathematical modelling. It is found that the nominal stress–strain curve of such structures deviates from typical stress–strain variation of NiTi with flat stress plateaus, by exhibiting stress gradients over the forward and reverse transformations of the hole-affected areas. The hole-affected length is nearly triple the lateral dimension of the hole, and when 33% of the gauge length is covered by (circular) holes, the entire sample behaves like a functionally graded material. Such mechanical behaviour is advantageous for achieving better load–displacement controllability and wider stress window for shape memory actuation and sensing. 相似文献
3.
《Intermetallics》2014
In the present work the effect of Cu/Zr atomic ratio on structural and calorimetric properties of this high temperature shape memory alloy (HTSMA) is studied. It has been discussed the changes induced by Cu/Zr ratio on the martensitic transformation temperatures and the corresponding transformation heats coupled with the phases microstructure. The modification of the Cu content in the range ±2% at, around the equiatomic composition, does not drastically change the thermal properties of the alloys. Moreover, the Cu/Zr ratio strongly influences the microstructure in terms of the presence and amount of the other characteristic phases, Cu10Zr7 and CuZr2, in the place of the CuZr phase. The understanding of the basic properties of the binary system can be of great help for further investigations on CuZr based systems with other alloying elements. 相似文献
4.
Characterization of silicide phases formed during pack siliconizing coating on the Nb-1Zr-0.1C alloy
《Intermetallics》2015
The present paper describes the morphology, chemistry and crystallography of the phases observed in the silicide coatings produced by pack cementation technique on Nb based alloys. Cross-sectional microstructures examined by transmission electron microscopy and scanning electron microscopy techniques have shown that the coating has two silicide layers: NbSi2 and Nb5Si3. NbSi2 formed at the surface of the sample and Nb5Si3 formed in between the substrate (Nb alloy) and NbSi2 coating layer. Electron diffraction analyses revealed that NbSi2 has hexagonal crystal structure with lattice parameters as a = 0.48 nm and c = 0.66 nm and Nb5Si3 has tetragonal crystal structure with lattice parameters as a = 0.65 nm and c = 1.19 nm. Nb5Si3 showed fine equiaxed grains, whereas, NbSi2 exhibited duplex morphology having columnar grain morphology near to the Nb5Si3 layer and large equiaxed grains at the surface of the coating sample. The presence of duplex morphology was explained by estimating diffusion of various species and it was shown that columnar morphology of grains could be attributed to outward diffusion of Nb and equiaxed grains to inward diffusion of Si. In the case of Nb5Si3, growth takes place due to single element Si diffusion, leading to development of single equiaxed grain morphology of the Nb5Si3 phase. 相似文献
5.
An investigation of microstructural evolution with various current densities in a lead-free Cu/SnAgCu/Au/Cu solder system was conducted in this study. Current stressing induced migration of Cu toward the anode and resulted in the formation of Cu6Sn5 at the interface. The consumption rates of Cu were calculated to be 2.24 × 10−7 μm/s and 5.17 × 10−7 μm/s at 1.0 × 103 A/cm2 and 2.0 × 103 A/cm2, respectively, while the growth rates of Cu6Sn5 were 6.33 × 10−7 μm/s and 7.72 × 10−7 μm/s. The atomic fluxes of Cu were found to be 2.50 × 1012 atom/cm2 s and 5.88 × 1012 atom/cm2 s at the above-mentioned current densities. The diffusivities of Cu in Cu6Sn5 were 2.02 × 10−11 cm2/s and 2.38 × 10−11 cm2/s under 1.0 × 103 A/cm2 and 2.0 × 103 A/cm2 of current stressing. Current stressing effectively enhances the migration of Cu in Cu6Sn5 and results in a 1000-fold increase of magnitude in diffusivity compared to thermal aging. (Cu1−x,Aux)6Sn5 compound was formed near the anode after a long period of current stressing. 相似文献
6.
Infrared brazing of Ti50Ni50 using two brazing filler metals was investigated in the study. Three phases, including Cu-rich, CuNiTi (Δ) and Ti(Ni,Cu), were observed in the Ti50Ni50/Cu/Ti50Ni50 joint after brazing at 1150 °C. The Cu-rich phase was rapidly consumed in the first 10 s of brazing, and the eutectic mixture of CuNiTi and Ti(Ni,Cu) phases were subsequently observed in the joint. Samples brazed for longer time resulted in less CuNiTi and more Ti(Ni,Cu) phases in the joint. The existence of CuNiTi phase deteriorated the shape memory effect of the joint, but Ti(Ni,Cu) could still preserve shape memory behavior even alloyed with a large number of Cu. Therefore, higher shape recovery ratio was observed for specimens brazed for a longer time period. Extensive presence of Ti2(Ni,Cu) phase was observed in Ti50Ni50/Ticuni®/Ti50Ni50 joint upon brazing the specimens up to 1150 °C. The bending test could not be performed due to the inherent brittleness of Ti2(Ni,Cu) matrix. Moreover, the stable Ti2(Ni,Cu) phase was difficult to be removed completely by increasing either brazing time and/or temperature. 相似文献
7.
《Intermetallics》2014
Microstructures and martensitic transformation behavior of Ti–Ni–Ag alloys prepared by arc melting were investigated by means of scanning electron microscopy (SEM), electron probe micro analysis (EPMA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and thermal cycling tests under constant load. Ti–Ni–Ag alloys consisted of Ti–Ni–Ag matrices, Ti2Ni and TiAg phases. Ti–Ni–Ag matrices contained 0.27–0.52 at.% of solute Ag atoms depending on alloy compositions. The B2–B19′ transformation occurred in Ti–50.1Ni–0.7Ag, Ti–49.2Ni–0.9Ag, Ti–49.2Ni–0.6Ag and Ti–49.0Ni–0.7Ag alloys, while the B2-R-B19′ transformation did in Ti–47.5Ni–1.3Ag and Ti–44.4Ni–1.1Ag alloys. Thermo-mechanical treatment separated the B2-R from the R–B19′ transformation clearly and improved shape recovery by increasing the critical stress for slip deformation in a Ti–50.0Ni–0.7Ag alloy. 相似文献
8.
《Intermetallics》2013
In general, the iron impurity is detrimental to the mechanical properties of Al–Si alloys. The α-phase and β-phase are the most important and common iron-containing intermetallic compounds (IMCs) in Al–Si alloys. During conventional casting, the acicular β-phase is stable, and considered to be harmful. In this paper, the Al-12%Si-2%Fe alloy was treated by power ultrasound and solidified under different cooling conditions. The effects of ultrasonic treatment (UST) and cooling rate on morphology and composition of IMCs were investigated. The results showed that UST can change the morphology and composition of iron-containing IMCs and promote the formation of metastable α-phase. When the ultrasound was applied at 720 °C, the amount of starlike α-phase increases and the acicular β-phase decreases with increasing applied time of UST. In addition, the polygonal α-phase is formed and substitutes for the β-phase when quenching after UST for 60 s and 120 s, suggesting that the formation of β-phase can be suppressed under this condition. For the case of UST at 610 °C which the β-phase has been nucleated, the β-phase transforms from an acicular shape to the rod-like morphology, indicating that the cavitation-induced fracture of β-phase. 相似文献
9.
Cu6Sn5 exists at least in two crystal structures with an allotropic transformation from monoclinic η'-Cu6Sn5 at temperatures lower than 186 °C to hexagonal η-Cu6Sn5. We recently discovered that the hexagonal structure of Cu6Sn5 in lead-free solder alloys with trace Ni additions is stable down to room temperature using high resolution TEM/ED/EDS. This report further confirm the phase stabilising effect of Ni by analysing samples of Cu6Sn5 extracted from a Sn-0.7wt%Cu-0.05wt%Ni lead-free solder alloy. Techniques used include X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. 相似文献
10.
《Intermetallics》2015
FeAl based alloys with carbon and titanium additions were prepared using arc induction melting and their effect on wear behaviour was investigated using ball-on-disk technique. The experimental results showed that carbon addition to FeAl alloys results in formation of perovskite-type Fe3AlC0.5 carbide phase and graphite. Addition of Ti promotes the formation of TiC and Fe3AlC0.5 and prevents the formation of graphite in the alloy. Hardness and wear resistance of FeAl based alloys increase with increase in the volume fraction of carbides. The FeAl alloys containing Ti exhibited low wear rate and coefficient of friction. Examination of wear tracks revealed micro ploughing at a lower load of 5N. Thin surface flakes with traces of their detachment were observed at a higher load of 10N. It was also observed that presence of graphite in localized regions reduce the wear resistance of the alloy. The results are correlated with observed microstructure and hardness. 相似文献
11.
《Intermetallics》2014
The influence of ball milling on microstructure and thermal stability of the gas-atomized Al84Gd6Ni7Co3 glassy powder has been investigated as a function of the milling time. The results show that the traces of crystalline phases present in the as-atomized powder decrease gradually with increasing the milling time. The thermal stability of the fcc-Al primary phase increases while the thermal stability of the intermetallic phases decreases with increasing milling. Moreover, significant improvement in hardness occurs after milling, which is attributed to the amorphization of the residual crystalline phases present in the as-atomized powder. These results demonstrate that milling is an effective way for amorphizing the residual crystalline present in the amorphous matrix and to control the thermal stability of the material. 相似文献
12.
《Intermetallics》2014
The microstructures of the as-cast and as-extruded Mg-9Li-xY alloys (x = 0, 0.3; wt%) were observed to investigate the effect of Y on the Mg-9Li alloy, and the crystallographic calculations between Mg24Y5 and the matrix were examined on the basis of the edge-to-edge matching model. The results indicated that with the addition of 0.3 wt% Y, the average grain size of α-Mg phases in the as-cast Mg-9Li alloy and β-Li phases in the as-extruded Mg-9Li alloy were reduced remarkably, which was caused by the formation of Mg24Y5 intermetallic compound. Furthermore, crystallographic calculations confirmed that Mg24Y5 particles were effective grain refiners for both α-Mg and β-Li phases in Mg-9Li alloy. 相似文献
13.
In this study several disc specimens of three different compositions of the Fe–Mo system were prepared by spark plasma sintering and annealing, and their friction and wear properties were investigated. It was found that, when ASTM 52100 steel balls were used as the paired materials, both the Fe–42 at% Mo and Mo disc specimens exhibited lower friction coefficients and lower wear rates than the Fe and cast iron disc specimens. It was also found that the spark plasma-sintered Fe–42 at% Mo disc specimens without any heat treatments exhibited lower friction coefficients than those annealed at 1323 K for 172.8 ks. According to the XPS analysis, iron oxides and iron sulfides were found on the worn surfaces of the Fe disc specimens that were slid against the ASTM 52100 steel balls, while molybdenum oxides such as MoO2, but not MoS2, were observed on the worn surfaces of the annealed Fe–42 at% Mo and Mo disc specimens that were slid against the steel balls. 相似文献
14.
The crystallisation of the oxygen-stabilised amorphous phase in a Zr50Cu50 alloy has been investigated by means of neutron diffraction and electron microscopy. The crystallisation microstructure consists of ZrO2, Zr2Cu and Zr7Cu10. A two-stage crystallisation mechanism is suggested: (i) primary crystallisation of Zr2Cu and (ii) formation of nanocrystals ZrO2 and Zr7Cu10. In (i), it is proposed, Zr2Cu crystallises from the oxygen-stabilised amorphous phase, leaving an oxygen- and copper-enriched matrix ; Zr2Cu rapidly grows and eventually attains a grain size of about 100 nm. In (ii), it is suggested, the residual amorphous matrix crystallises into nanocrystals ZrO2 and Zr7Cu10 due to the sluggish growth of ZrO2 and to the already formed ZrO2 which acts as a growth barrier to Zr7Cu10. In this case there is no particular orientation relationship between Zr2Cu and Zr7Cu10. 相似文献
16.
《Intermetallics》2017
The influence of Ti powder purity on phase evolution during the reactive sintering of elemental Ni and Ti powders to form NiTi was studied using differential scanning calorimetry (DSC) and in-situ neutron diffraction. Reaction between the Ni and Ti is not significant until 600 °C. From 600 to 700 °C, Ti2Ni forms in mixtures made from high (HP) and low purity (LP) Ti powder. The Ni3Ti phase also grows in this temperature range in the LP mixture. The most significant phase evolution takes place between 700 and 920 °C. The α to β phase transformation in (Ti) begins at the eutectoid temperature (765 °C) and ends at 820 °C. The highest growth rates for all three intermetallic phases, including NiTi, and the decay rate of the elemental Ni occur in this temperature range. At approximately 1000 °C, all reactants are consumed and homogenization occurs, with NiTi continuing to grow at the expense of the other intermetallic phases. The Ti rich intermetallic phase persists above its melting point, due to the formation of a solid-solution with oxygen (i.e. Ti2Ni(O)). From 1100 to 1200 °C, the microstructure becomes a stable mixture of NiTi with a small fraction of Ti2Ni(O). The phase evolution is similar in the LP and HP mixtures. However, the rate of reaction is higher in the LP mixture due to the influence of impurities (O, Fe and Ni) on the diffusivities in the many phases involved. 相似文献
17.
《Intermetallics》2014
Microstructure, martensitic transformation and mechanical properties of an ultrafine-grained Ti44Ni47Nb9 shape memory alloy processed by equal channel angular pressing were investigated. The as-ECAP processed sample is characterized by an inhomogeneous and refined microstructure. In β-Nb phase-rich region, the grains of matrix are elongated with high density dislocations. In β-Nb phase-free region, the microstructure is partial recovery and characterized by near-equiaxed grains. The heterogeneous microstructure is attributed to presence of β-Nb phase. Martensitic transformation behavior of the as-ECAP processed sample is characterized by a single-stage transformation. The thermal cycling stability of transformation and the mechanical properties are considerably improved due to a strengthening effect resulting from refined grain size and high dislocation density. 相似文献
18.
《Intermetallics》2015
Vacuum induction melting device combined with temperature control system was employed to investigate the effect of isothermal heat treatment (IHT) during solidification process on the microstructure evolution of a high Nb containing TiAl alloy. The microstructures of the alloy in as-cast condition and after IHT were studied. The results show that the as-cast microstructures exhibit a significant microstructural inhomogeneity with fine grains in dendrite core and coarse grains in interdendritic region. A new treatment approach by means of a short-term IHT within the β phase field during solidification process is proposed to obtain a uniform and refined microstructure. Compared with the as-cast alloy, IHT can reduce the tendency for crack. This phenomenon is attributed to the improvement of microstructural homogeneity by the elimination of peritectic α phase and the microstructure refinement by β → α transformation. 相似文献
19.
《Intermetallics》2014
Here we report the structural characterization of a complex Ti–Sn intermetallic compound, Ti6Sn5. From X-ray diffraction, the resulting compound was observed to exist in both orthorhombic and hexagonal phases. Analysis by electron microscopy revealed that “planar-like” defects form throughout the material. Atomic resolution aberration-corrected scanning transmission electron microscopy reveals that these “planar-like” defects represent the coexistence of the orthorhombic and hexagonal phases within single grains. The resulting interwoven phases range in thickness from a fraction to multiple unit cells and exhibit coherent phase boundaries with the matrix grain. 相似文献
20.
《Intermetallics》2015
The deformation mechanisms associated with different fracture surface appearances of a fatigue tested lamellar TiAl-based alloy have been studied in detail by focussed ion beam and transmission electron microscopy. The results show that linear markings within translamellar plates correspond to twins and/or slip bands. The markings in interlamellar region are associated with the crack propagation from a lamellar boundary to another. The fan-like region with linear markings belongs to a γ grain and the markings are related to twins. Intralamellar crack propagation is associated with twin–twin interaction within a γ lamella. 相似文献