首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
表面肌电信号因为具有非入侵式、易于采集特点,被广泛应用于康复医疗和行为识别等领域.传统的基于表面肌电信号sEMG( Surface Electromyography)的手势识别通常采用数字信号处理DSP( Digital Signal Processing)芯片或者集合方法研究实时识别问题.这些方法易导致数学模型参数繁多、硬件连接复杂和实时识别率较低.提出一种基于肌电信号与柔性神经树FNT(Flexible Neural Trees)模型的实时手势识别模型.柔性神经树模型通过简单的预定义建立,能够解决人工神经网络ANN( Artificial Neural Network)的结构高依赖性问题.柔性神经树模型不仅能够避免复杂的计算和电路连接,还具有较高的实时识别率.针对六名参与者的六种手势进行实验,实验结果表明:该模型的均方根误差RMSE(Root Mean Square Error)最低为0.000385,实时识别率最高可达97.53%.  相似文献   

2.
在当前科学技术快速发展的大背景下,通过应用卷积神经网络原理,能够将表面肌电信号的手势通过一维多通道的方式识别出来,避免在前期采用复杂的方法对表面信号进行预处理以及对信息采用手工提取方法所花费的时间.基于此,以右手为活动手,分析了握拳、向左、向右以及展拳4种手势时的表面肌电信号.将不同手势的肌电信号进行标记,生成信号长度不同的8通道信号训练集和测试集,并借助卷积神经网络的相关原理分析了卷积状态下的采样.借助相关研究后通过卷积神经网络的应用,能够实现卷积神经网络表面肌电信号的高效处理,从而实现对手势信号的识别,且识别率能够满足具体使用需求,因此其在实际工作中应用是有价值的.  相似文献   

3.
《微型机与应用》2017,(15):59-61
运用卷积神经网络原理,实现一维多通道的表面肌电信号的手势识别,避免了复杂的前期表面信号的预处理,以及手工特征提取阶段。文中分别采集右手的握拳、向左、向右和展拳4种手势的表面肌电信号。然后将采集的四种不同手势的肌电信号进行切割与标记,生成不同信号长度的八通道信号的训练集与测试集,运用卷积神经网络的原理,分别对其进行卷积、下采样。经过试验研究发现,运用卷积神经网络处理一维多通道表面肌电信号,从而实现手势识别的算法是可行的,并且能够得到较高的识别率。  相似文献   

4.
在互联网产生的早期阶段对其进行准确有效的识别,对于网络管理和网络安全来说都有着极其重要的意义。鉴于此,近年来越来越多的研究致力于仅仅基于流量早期的数个数据包,建立有效的机器学习模型对其进行识别。本文力图基于柔性神经树( FNT)构建有效的互联网流量早期识别模型。两个开放数据集和一个实验室采集的数据集用于实验研究,并将FNT与8种经典算法进行对比。实验结果表明,FNT在大多数情况下,其识别率和误报率指标优于其他算法,这说明FNT是一种有效的流量早期识别模型。  相似文献   

5.
基于柔性印刷工艺的表面肌电电极阵列装置的设计   总被引:1,自引:0,他引:1  
设计了一种基于柔性印刷工艺的表面肌电电极阵列装置。该电极阵列由12个直径1.2mm的镀金圆电极分成两列组成,内部电极间距为3mm。电极载体材料(聚酰亚胺,厚50μm)具有较高的机械柔性,表面镀金(厚度2μm)的电极具有较低的阻抗,特制的聚酯双面胶带用于可重复使用的电极阵列装置的固定。在单指力量输出任务时记录指浅屈肌的多通道表面肌电(surface Electromyogram,sEMG)信号的实验中得到了稳定的基线和较好的sEMG信号。初步的实验结果表明,设计的这种低成本、体积小的高密度电极阵列装置能用于表面肌肉空间sEMG信号的检测。  相似文献   

6.
《微型机与应用》2017,(17):56-58
为了改善传统肌电信号手势识别过程的复杂性,将稀疏表示用于表面肌电信号手势识别。针对不同的动作模式下对表面肌电信号提取的特征总是有较大的差异,稀疏表示的过程可以将差异放大,从而改善分类效果。本文首先采集不同手势的多通道表面肌电信号,然后将多通道信号进行切割;通过求解测试样本在训练矩阵下的稀释表示,达到分类识别的目的,并通过实验仿真验证了算法的可行性和优越性。  相似文献   

7.
为了提升表面肌电信号(sEMG)手势动作识别的准确性和训练效率,提出一种基于LightGBM的手势识别模型.传统的GBDT算法训练效率较低,准确率无法快速提升,LightGBM算法采用基于梯度的单侧采样和互斥特征捆绑改进性能,具有训练速度快、占用内存低、分类准确率高的优势.将臂环采集到的8通道sEMG数据按时间顺序进行...  相似文献   

8.
多通道表面肌电信号(surface electromyography,sEMG)传统手势识别方法,主要提取各个通道时域、频域和时频域特征作为分类器的输入,鲜有考虑通道间的相关性,在提升识别精度上遇到瓶颈。为了充分利用sEMG多通道信息以提高手势识别精度,提出一种以多通道相关性为特征的肌电手势识别方法。该方法计算多通道间一致性相关系数,作为多通道sEMG线性相关特征参数,同时获取多通道间的互信息,作为多通道sEMG非线性相关特征参数。实际运用中精确估计联合概率密度函数往往十分困难,根据互信息与copula熵关系,将互信息估计转化为copula熵的估计,通过经验分布函数进行概率积分变换,采用非参数估计方法估计copula熵,从而避免联合概率密度函数的估计。利用两种相关性特征参数构建多通道相关性特征进行对比实验,基于stacking模型使用多通道相关性特征与4种常用时域特征进行识别并对比结果,其次基于多通道相关性特征使用stacking模型与5种常用分类器进行对比识别,实验结果表明所提的多通道相关性特征能有效区分手势动作,在采集的健康受试者手势数据集上平均识别准确率达到94%。  相似文献   

9.
表面肌电信号识别特征提取的仿真研究   总被引:1,自引:0,他引:1  
研究表面肌电信号准确识别问题,表面肌电信号含有大量的噪声,且特征维数高,传统方法无法消除其中的噪声,选择最重要识别特征信号,表面肌电信号识别正确率低.为提高表面肌电信号的识别正确率,提出一种新的表面肌电信号识别模型.首先采用小波变换提取表面肌电信号特征,消除信号中的噪声,然后采用遗传算法选择最优特征信号,降低特征维数,最后采用遗传算法对支持向量机参数进行优化建立最优表面肌电信号识别模型.仿真结果表明,模型可很好地解决传统方法中的难题,提高了表面肌电信号的平均识别正确率,识别结果非常稳定,为表面肌电信号提供了一种新的识别方法.  相似文献   

10.
为了获得更加便捷和简单的人机交互方式,采用由Arduino UNO开发板和肌电传感器组成的双通道表面肌电信号采集系统采集手前臂的表面肌电信号,并在上位机中利用MATLAB(R2018b)对采集到的信号进行预处理、活动段检测、特征提取和分类器训练与预测;在识别出手势动作之后,利用GUI界面实时地显示出识别结果。该系统从肌电信号到手势识别、再从手势识别到计算机系统的人机交互方式展现了巨大的潜力和应用空间,尤其是在虚拟现实领域。  相似文献   

11.
Surface Electromyography (sEMG) is a non-invasive, easy to record signal of superficial muscles from the skin surface. The sEMG is widely used in evaluating the functional status of the hand to assist in hand gesture recognition, prosthetics and rehabilitation applications. Considering the nonlinear and non-stationary characteristics of sEMG, hand gesture recognition using sEMG signals necessitate designers to use Maximal Lyapunov Exponent (MLE) or ensemble Empirical Mode Decomposition (EMD) based MLEs. In this research, we propose a hand gesture recognition method of sEMG based on nonlinear multiscale MLE. The aim is to increase the classification accuracy of sEMG features while reducing the complexity of EMD. The nonlinear MLE features are classified using Flexible Neural Tree (FNT), which can solve highly structured dependent problems of the Artificial Neural Network (ANN). The testing has been conducted using several experiments with five participants. The classification performance of nonlinear multiscale MLE method is compared with MLE and EMD-based MLE through simulations. Experimental results demonstrate that the former algorithm outperforms the two latter algorithms and can classify six different hand gestures up to 97.6% accuracy.  相似文献   

12.
为了提高人体手部动作的识别性能,针对高维特征数据给模式识别带来的问题,提出了一种基于局部线性嵌入(LLE)算法和支持向量机(SVM)的模式识别方法.该方法从肱桡肌和尺侧腕屈肌上采集两路表面肌电信号(sEMG),通过对样本信号的时域分析和小波分析,提取原始信号的特征,构造特征矢量.再利用LLE算法对原始特征数据进行降维,挖掘出具有内在规律的低维特征.将降维后的特征数据输入SVM分类器进行4种动作的模式识别.实验表明:此方法可以有效、准确地对人体手部动作进行分类.  相似文献   

13.
针对手势识别过程中单一手势特征对手势描述的不足,提出了一种基于改进Hu矩和灰度共生矩阵GLCM的手势识别方法 Hu-GLCM。首先利用肤色模型对采集的图像分割出手势区域;其次采用数学形态学和多边形拟合的方法提取手势的单连通轮廓,利用改进Hu-GLCM算法提取手势的几何形状特征和纹理特征并建立模板数据库;最后通过扩展的Canberra距离对手势图像进行识别和分类。实验结果表明,该改进算法对7种手势的平均识别率达到95%以上,且计算速度快,能够满足实时性的需求。  相似文献   

14.
为了更好地识别手部动作,提出了一种新思路,将单个手指的状态作为识别目标集。采集常用手部联合动作的6路表面肌电信号,以单个手指的状态为基准将动作合理规划,提取各通道样本均值构造特征向量,设计3个并行BP神经网络,从联合动作样本中学习单个手指的状态,使得分类基数小,从而降低分类的复杂度,克服了传统多分类方法中需要采集动作多的缺点。实验结果表明,采集12种手部动作的肌电信号,将手部动作合理简化为手指动作后,利用手指的状态来训练神经网络,就能够识别出手指的3个状态的所有组合动作,即所有常用的18种手部联合动作。  相似文献   

15.
基于改进RCE和RBF神经网络的静态手势识别   总被引:3,自引:0,他引:3       下载免费PDF全文
针对手势识别的手区域分割、手势特征提取和手势分类的三个过程,提出了一种新的静态手势识别方法。改进了传统的RCE神经网络用于手区域的分割,具有更高的运行速度和更强的抗噪能力。依Freeman链码方向提取手的边缘到掌心的距离作为手势的特征向量。将上一步得到的手势特征向量作为RBF神经网络的输入,进行网络的训练和分类。实验验证了该方法的有效性和可行性,并用其实现了人和仿人机器人的剪刀石头布的猜拳游戏。  相似文献   

16.
刘红  刘蓉  李书玲 《计算机应用》2015,35(1):189-193
针对手势交互中手势信号的相似性及不稳定性,设计并实现了一种基于随机投影(RP)的加速度手势识别方法.识别系统包含训练阶段和测试阶段:训练阶段运用动态时间规整(DTW)和近邻传播(AP)算法对训练集中的每一个手势迹创建样本中心;测试阶段先通过计算未知手势迹与样本中心的距离找出候选姿势迹,然后用RP算法将候选手势迹和未知手势迹投影到低维子空间,把识别问题转换成l1-minimization问题来对未知的手势迹进行识别.在采集的2400个数据样本上进行了基于特定人和非特定人的实验,结果表明所提算法分别取得了98.41%和96.67%的识别率,该方法能够有效识别加速度手势动作.  相似文献   

17.
针对利用表面肌电信号(sEMG)对手势动作的肌电信号的研究较少和sEMG信号处理过于复杂的问题,提出了利用人工神经网络和sEMG信号对人的手势动作进行识别研究,引入了MYO硬件设备对新的手势动作sEMG信号采集.利用MYO从手臂上获取每一个手势动作的sEMG信号,提取信号特征值,作为算法的训练数据和测试数据.采用人工神经网络中的反向传递神经网络算法来进行对4种不同手势动作分类,对应目标手指识别率在90.35%.研究结果可以被用来做临床诊断和生物医学的应用以及用于现代硬件的发展和更现代化的人机交互的发展.  相似文献   

18.
为实现亮度不均的复杂纹理背景下表面划痕的鲁棒、精确、实时识别,提出一种基于深度神经网络的表面划痕识别方法。用于表面划痕识别的深度神经网络由风格迁移网络和聚焦卷积神经网络(CNN)构成,其中风格迁移网络针对亮度不均的复杂背景下的表面划痕进行预处理,风格迁移网络包括前馈转换网络和损失网络,首先通过损失网络提取亮度均匀模板的风格特征和检测图像的知觉特征,对前馈转换网络进行离线训练,获取网络最优参数值,最终使风格迁移网络生成亮度均匀且风格一致的图像,然后,利用所提出的基于聚焦结构的聚焦卷积神经网络对生成图像中的划痕特征进行提取并识别。以光照变化的金属表面为例,进行划痕识别实验,实验结果表明:与需要人工设计特征的传统图像处理方法及传统深度卷积神经网络相比,划痕漏报率低至8.54%,并且收敛速度更快,收敛曲线更加平滑,在不同的深度模型下均可取得较好的检测效果,准确率提升2%左右。风格迁移网络能够保留完整划痕特征的同时有效解决亮度不均的问题,从而提高划痕识别精度;同时聚焦卷积神经网络能够实现对划痕的鲁棒、精确、实时识别,大幅度降低划痕漏报率和误报率。  相似文献   

19.
提出了一种新的手势识别方法,该方法从深度图像中提取手形轮廓,通过计算手形轮廓与轮廓形心点的距离,使用离散傅里叶变换获得手势的表观特征,引入径向基核的支持向量机识别手势。建立了一个常见的10种手势的数据集,测试获得了97.9%的识别率。  相似文献   

20.
针对人脸表情识别的泛化能力不足、稳定性差以及速度慢难以满足实时性要求的问题,提出了一种基于多尺度核特征卷积神经网络的实时人脸表情识别方法。首先,提出改进的MobileNet结合单发多盒检测器(MSSD)轻量化人脸检测网络,并利用核相关滤波(KCF)模型对检测到的人脸坐标信息进行跟踪来提高检测速度和稳定性;然后,使用三种不同尺度卷积核的线性瓶颈层构成三条支路,用通道合并的特征融合方式形成多尺度核卷积单元,利用其多样性特征来提高表情识别的精度;最后,为了提升模型泛化能力和防止过拟合,采用不同的线性变换方式进行数据增强来扩充数据集,并将FER-2013人脸表情数据集上训练得到的模型迁移到小样本CK+数据集上进行再训练。实验结果表明,所提方法在FER-2013数据集上的识别率达到73.0%,较Kaggle表情识别挑战赛冠军提高了1.8%,在CK+数据集上的识别率高达99.5%。对于640×480的视频,人脸检测速度达到每秒158帧,是主流人脸检测网络多任务级联卷积神经网络(MTCNN)的6.3倍,同时人脸检测和表情识别整体速度达到每秒78帧。因此所提方法能够实现快速精确的人脸表情识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号