首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
基于多种群的自适应免疫进化计算   总被引:3,自引:0,他引:3  
宋丹  傅明 《控制与决策》2005,20(11):1251-1255
将免疫思想同思维进化计算相结合,提出一种新的基于多种群的自适应免疫进化算法(IABM),算法定义了选择、记忆、克隆、超变异、抑制5种基本算子.试验结果表明该算法具有高效的收敛速度,并能收敛到全局最优点.与多种群遗传算法和思维进化计算相比,IABM收敛速度更快,收敛率更高.  相似文献   

2.
基于串联协作的多方法协作优化方法   总被引:1,自引:0,他引:1  
为更好地求解复杂优化问题的全局最优解,提出了基于串联协作的多方法协作优化方法。它采用串联方式组织各个优化方法之间的协作。各个优化方法在每次协作中进行若干次优化,每一优化方法在优化过程中及优化结果中包含的优化信息被用于其它优化方法中,以提高整体优化性能。选择了遗传算法、模式搜索法和Powell法等三个直接优化方法进行串联协作组成的多方法协作优化方法的设计,并对其优化特性进行了深入的理论分析。最后,用三个复杂多维函数对算法性能进行了测试。计算实例表明,基于串联协作的多方法协作优化方法取得了优于单个优化方法的全局最优特性。  相似文献   

3.
基于免疫原理的多目标进化算法群体多样性研究   总被引:4,自引:0,他引:4  
在多目标进化系统中一个关键问题是必须采取某一措施来保持群体多样性.本文将自然生命的免疫机制引入多目标进化过程,提出一种基于免疫原理的多目标进化算法群体多样性保持策略,并给出了具体设计方法.最后以两个目标的流水车间作业调度问题为例进行计算机模拟求解,将本文方法与"多目标遗传算法"的计算结果进行了对比,实验表明该方法能有效保持群体多样性,多目标优化结果的性能较好.  相似文献   

4.
将多种群的进化方式和链式结构的动态邻域引入到多智能体进化算法中,提出了一种链式多种群多智能体进化算法.算法设置了多种群交互的演化结构.各种群中的智能体通过与其动态邻域智能体的竞争、合作及自学习操作来增加自身的能量;动态邻域的链式结构提高了算法的效率、降低了计算复杂度;多个种群之间的信息定期以一定的方式进行交互,增强了种群的多样性,减小了算法陷入局部最优的机率.理论分析和多个测试函数的仿真结果均表明:链式多种群多智能体进化算法在求解高维优化问题上具有很好的性能.  相似文献   

5.
量子多目标进化算法研究   总被引:1,自引:2,他引:1  
本文首次将量子计算的理论用于多目标优化,提出量子多目标进化算法(QMOEA),其采用量子位染色体表示法,利用量子门旋转策略和量子变异实现群体的进化,使用ε支配关系构造外部种群以此保持算法的较好分布性,提出基于快速排序的非劣最优解构造方法加快算法运行效率,实验表明,这种方法与经典的多目标进化算法SPEA2相比,其收敛性更好且分布更均匀  相似文献   

6.
为提高免疫算法在物流配送中心选址问题的效率,文章引入了多种群协同进化的框架模型,在此模型上提出了一种多种群免疫协同进化算法(Multiple Population Immune Co-evolution Algorithm,MPICA).MPICA通过对若干个抗体子群进行多样性评价,获得各自的记忆库和父代种群;记忆库之间通过移民算子进行联系,增大优秀抗体亲和度成熟的概率;各父代种群通过期望繁殖率进行选择、动态交叉和变异来提高抗体分布的多样性.针对物流配送中心选址实验数据表明,MPICA具有可靠地收敛性和全局寻优能力,能够高效的进行物流配送中心的选址.  相似文献   

7.
基于协作协进化的多智能体机器人协作研究   总被引:2,自引:0,他引:2  
协作问题一直是自主多智能体机器人系统研究的关键问题之一。基于多智能体机器人系统的CCP协作协议所生成的各智能体机器人的任务序列依赖于目标的初始顺序,因此难以得到最优解。文章提出了利用协作协进化来实现多智能体机器人之间协作的一种机制。该方法采用基于协作种群的技术来生成多智能体机器人任务执行序列,在给定的任务分解产生的所有可能解中寻找最优解,并通过交换局部知识和并行决策等手段来优化系统的性能。利用该机制,对3个智能体协作搬运8个物体进行计算机模拟,结果表明,该机制在优化任务执行序列方面作用明显,从而能有效提高多智能体机器人系统的性能。  相似文献   

8.
采用遗传算法、模式搜索法和Powell法进行多方法协作构成多方法协作优化方法,进行多方法协作优化方法的结构设计,分析多方法协作优化方法的优化性能。实例证明了多方法协作优化方法相对于遗传算法的优越性。  相似文献   

9.
10.
第一次将量子计算的理论用途于多目标优化之上可以提出量子多目标进化算法其采用量子位研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。  相似文献   

11.
一类自适应免疫进化算法   总被引:15,自引:0,他引:15       下载免费PDF全文
基于免疫系统中的进化机理,提出一种自适应免疫进化算法,通过定义扩展半径和突交半径两个新算法参数构造了较小和较大两个邻域,分别利用这两个邻域进行局部和全局搜索,从而形成两层领域搜索机制,以保证算法的全局和局部搜索能力,定义了群体的多样度,并以此自适应调节算法参数以提高算法性能,给出了算法的全局收敛性证明,仿真结果表明,该算法收敛速度快,具有良好的全局寻优和局部求精能力。  相似文献   

12.
借鉴遗传算法中采用并行机制避免局部收敛的思想,提出了一种基于多种群的多目标免疫算法。在该算法中建立多个子种群分别进行免疫操作,子种群之间通过优秀个体转移进行信息交换,可有效地提高种群的多样性,加速收敛。采用几种典型的多目标优化函数进行实验,并同常用的多目标遗传算法NSGA-II进行比较,仿真结果表明了该算法能有效解决多目标优化问题且具有一定的优越性。  相似文献   

13.
基于Pareto的多目标进化免疫算法*   总被引:2,自引:1,他引:1  
提出一种新的基于Pareto多目标进化免疫算法(PMEIA)。算法在每一代进化群体中选取最优非支配抗体保存到记忆细胞文档中;同时引入Parzen 窗估计法计算记忆细胞的熵值,根据熵值对记忆细胞文档进行动态更新,使算法向着理想Pareto最优边界搜索。此外,算法基于点在目标空间分布情况进行克隆选择,有利于得到分布较广的Pareto最优边界,且加快了收敛速度。与已有算法相比,PMEIA在收敛性、多样性,以及解的分布性方面都得到很好的提高。  相似文献   

14.
提出了一个求解函数优化问题的高效演化算法,其设计思想由混合选择策略与分类变异簟略构成。该算法使用锦标赛选择、轮盘选择相结合的混合选择策略。变异运算分为三类进行:对最好个体实施模式搜索。对适应值排名靠前的三分之一的个体采用柯西变异,而其它个体使用普通变异算子。针对15个测试函数的实验取得了相当好的效果,实验结果表明该算法不仅收敛速度快.而且所求得的解达到或者以相当高的精度逼近最优解。  相似文献   

15.
基于免疫原理的进化算法   总被引:5,自引:1,他引:5       下载免费PDF全文
基于人类免疫系统的机理提出一种进化算法.简述了算法的基本原理与特点,定义了克隆、超变异、选择和记忆4种基本操作算子,给出了算法的主要步骤,并证明了算法能够以概率1收敛到全局最优点.用不同的测试函数进行仿真实验,结果表明该算法是有效的,能以较快的速度完成给定范围的搜索和优化任务.  相似文献   

16.
利用阵列信号处理时域与空域等效的关系,以平面阵为基础,采用阵列协方差矩阵的奇异值分解和广义特征值分解估计接收信号的频率,通过分析阵列模型,提出一种抗原和抗体的亲和力函数;利用量子免疫进化的特性,估计出信号的俯仰角和方位角,从而完成阵列信号的多维参数估计,改善了多维参数估计的抗噪性能、数值稳定性和运行时间。通过计算机仿真,证明了该算法的有效性。  相似文献   

17.
提出一种快速演化自满(FEA),在演化过程中融合了梯度的随机模拟,免疫算子和模拟退火自满的思想,使得算法朝着优化的方向进行,在一定程度上避免了标准演化算法的演化时间过长和早熟问题,仿真结果表明,该算法具有精度高和收敛速度快的优点。  相似文献   

18.
针对现有进化算法在进行逻辑电路设计时存在的进化缓慢和容易陷入局部解等问题,提出一种自适应免疫进化算法(adaptive immune evolutionary algorithm,AIEA)。该算法引入了免疫记忆机制和抗体差异调节算子,能够很好地保证个体的多样性,有利于跳出局部最优解;通过采用自适应交叉率和变异率,提高了算法的搜索能力和收敛速度。通过与多目标进化算法(MOEA)、简单免疫算法(SIA)的实验比较,证明了该自适应免疫进化算法的有效性。  相似文献   

19.
基于免疫进化的粒子群混洗蛙跳算法   总被引:2,自引:0,他引:2  
李祚泳  张正健  余春雪 《计算机应用》2011,31(12):3288-3291
为了避免混洗蛙跳算法易于出现不成熟收敛,提高求解质量,提出了基于免疫进化的粒子群混洗蛙跳算法。该算法将粒子群算法中粒子追踪全局极值的思想融入混洗蛙跳算法中,对族群内的最差个体同时跟踪族群内和全局两个最优个体的信息,进行深度搜索;并引入免疫进化算法对群体中的最优个体进行免疫进化迭代计算,以达到充分利用最优个体的信息的目的。该算法不仅避免了陷入局部极值的局限,以更高的精度逼近全局最优解,而且能加速收敛。对多个典型测试函数的计算表明:基于免疫进化的粒子群混洗蛙跳算法比传统的混洗蛙跳算法具有更好的寻优能力、稳定效果和更快的收敛速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号