共查询到19条相似文献,搜索用时 78 毫秒
1.
基于多种群的自适应免疫进化计算 总被引:3,自引:0,他引:3
将免疫思想同思维进化计算相结合,提出一种新的基于多种群的自适应免疫进化算法(IABM),算法定义了选择、记忆、克隆、超变异、抑制5种基本算子.试验结果表明该算法具有高效的收敛速度,并能收敛到全局最优点.与多种群遗传算法和思维进化计算相比,IABM收敛速度更快,收敛率更高. 相似文献
2.
基于串联协作的多方法协作优化方法 总被引:1,自引:0,他引:1
为更好地求解复杂优化问题的全局最优解,提出了基于串联协作的多方法协作优化方法。它采用串联方式组织各个优化方法之间的协作。各个优化方法在每次协作中进行若干次优化,每一优化方法在优化过程中及优化结果中包含的优化信息被用于其它优化方法中,以提高整体优化性能。选择了遗传算法、模式搜索法和Powell法等三个直接优化方法进行串联协作组成的多方法协作优化方法的设计,并对其优化特性进行了深入的理论分析。最后,用三个复杂多维函数对算法性能进行了测试。计算实例表明,基于串联协作的多方法协作优化方法取得了优于单个优化方法的全局最优特性。 相似文献
3.
基于免疫原理的多目标进化算法群体多样性研究 总被引:4,自引:0,他引:4
在多目标进化系统中一个关键问题是必须采取某一措施来保持群体多样性.本文将自然生命的免疫机制引入多目标进化过程,提出一种基于免疫原理的多目标进化算法群体多样性保持策略,并给出了具体设计方法.最后以两个目标的流水车间作业调度问题为例进行计算机模拟求解,将本文方法与"多目标遗传算法"的计算结果进行了对比,实验表明该方法能有效保持群体多样性,多目标优化结果的性能较好. 相似文献
4.
5.
量子多目标进化算法研究 总被引:1,自引:2,他引:1
本文首次将量子计算的理论用于多目标优化,提出量子多目标进化算法(QMOEA),其采用量子位染色体表示法,利用量子门旋转策略和量子变异实现群体的进化,使用ε支配关系构造外部种群以此保持算法的较好分布性,提出基于快速排序的非劣最优解构造方法加快算法运行效率,实验表明,这种方法与经典的多目标进化算法SPEA2相比,其收敛性更好且分布更均匀 相似文献
6.
为提高免疫算法在物流配送中心选址问题的效率,文章引入了多种群协同进化的框架模型,在此模型上提出了一种多种群免疫协同进化算法(Multiple Population Immune Co-evolution Algorithm,MPICA).MPICA通过对若干个抗体子群进行多样性评价,获得各自的记忆库和父代种群;记忆库之间通过移民算子进行联系,增大优秀抗体亲和度成熟的概率;各父代种群通过期望繁殖率进行选择、动态交叉和变异来提高抗体分布的多样性.针对物流配送中心选址实验数据表明,MPICA具有可靠地收敛性和全局寻优能力,能够高效的进行物流配送中心的选址. 相似文献
7.
基于协作协进化的多智能体机器人协作研究 总被引:2,自引:0,他引:2
协作问题一直是自主多智能体机器人系统研究的关键问题之一。基于多智能体机器人系统的CCP协作协议所生成的各智能体机器人的任务序列依赖于目标的初始顺序,因此难以得到最优解。文章提出了利用协作协进化来实现多智能体机器人之间协作的一种机制。该方法采用基于协作种群的技术来生成多智能体机器人任务执行序列,在给定的任务分解产生的所有可能解中寻找最优解,并通过交换局部知识和并行决策等手段来优化系统的性能。利用该机制,对3个智能体协作搬运8个物体进行计算机模拟,结果表明,该机制在优化任务执行序列方面作用明显,从而能有效提高多智能体机器人系统的性能。 相似文献
8.
采用遗传算法、模式搜索法和Powell法进行多方法协作构成多方法协作优化方法,进行多方法协作优化方法的结构设计,分析多方法协作优化方法的优化性能。实例证明了多方法协作优化方法相对于遗传算法的优越性。 相似文献
9.
10.
许婧祺 《计算机光盘软件与应用》2014,(14):304+306-304
第一次将量子计算的理论用途于多目标优化之上可以提出量子多目标进化算法其采用量子位研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 相似文献
11.
12.
借鉴遗传算法中采用并行机制避免局部收敛的思想,提出了一种基于多种群的多目标免疫算法。在该算法中建立多个子种群分别进行免疫操作,子种群之间通过优秀个体转移进行信息交换,可有效地提高种群的多样性,加速收敛。采用几种典型的多目标优化函数进行实验,并同常用的多目标遗传算法NSGA-II进行比较,仿真结果表明了该算法能有效解决多目标优化问题且具有一定的优越性。 相似文献
13.
基于Pareto的多目标进化免疫算法* 总被引:2,自引:1,他引:1
提出一种新的基于Pareto多目标进化免疫算法(PMEIA)。算法在每一代进化群体中选取最优非支配抗体保存到记忆细胞文档中;同时引入Parzen 窗估计法计算记忆细胞的熵值,根据熵值对记忆细胞文档进行动态更新,使算法向着理想Pareto最优边界搜索。此外,算法基于点在目标空间分布情况进行克隆选择,有利于得到分布较广的Pareto最优边界,且加快了收敛速度。与已有算法相比,PMEIA在收敛性、多样性,以及解的分布性方面都得到很好的提高。 相似文献
14.
提出了一个求解函数优化问题的高效演化算法,其设计思想由混合选择策略与分类变异簟略构成。该算法使用锦标赛选择、轮盘选择相结合的混合选择策略。变异运算分为三类进行:对最好个体实施模式搜索。对适应值排名靠前的三分之一的个体采用柯西变异,而其它个体使用普通变异算子。针对15个测试函数的实验取得了相当好的效果,实验结果表明该算法不仅收敛速度快.而且所求得的解达到或者以相当高的精度逼近最优解。 相似文献
15.
16.
利用阵列信号处理时域与空域等效的关系,以平面阵为基础,采用阵列协方差矩阵的奇异值分解和广义特征值分解估计接收信号的频率,通过分析阵列模型,提出一种抗原和抗体的亲和力函数;利用量子免疫进化的特性,估计出信号的俯仰角和方位角,从而完成阵列信号的多维参数估计,改善了多维参数估计的抗噪性能、数值稳定性和运行时间。通过计算机仿真,证明了该算法的有效性。 相似文献
17.
18.
19.
基于免疫进化的粒子群混洗蛙跳算法 总被引:2,自引:0,他引:2
为了避免混洗蛙跳算法易于出现不成熟收敛,提高求解质量,提出了基于免疫进化的粒子群混洗蛙跳算法。该算法将粒子群算法中粒子追踪全局极值的思想融入混洗蛙跳算法中,对族群内的最差个体同时跟踪族群内和全局两个最优个体的信息,进行深度搜索;并引入免疫进化算法对群体中的最优个体进行免疫进化迭代计算,以达到充分利用最优个体的信息的目的。该算法不仅避免了陷入局部极值的局限,以更高的精度逼近全局最优解,而且能加速收敛。对多个典型测试函数的计算表明:基于免疫进化的粒子群混洗蛙跳算法比传统的混洗蛙跳算法具有更好的寻优能力、稳定效果和更快的收敛速度。 相似文献