首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition and metabolism of high density lipoprotein (HDL) subfractions were investigated in seven nomal individuals. Mean HDL2 (d, 1.063–1.125 g/ml) composition (by weight) was 43% protein, 28% phospholipid, 23% cholesterol, and 6% triglyceride, and mean HDL3 (d, 1.125–1.21 g/ml) composition was 58% protein, 22% phospholipid, 14% cholesterol, and 5% triglyceride. The mean apoA-I; apoA-II weight ratio was 4.75 for HDL2 and 3.65 for HDL3.HDL2 protein was proportionally slightly richer in C apolipoproteins and higher molecular weight constituents (including apoE) than HDL3. Kinetic studies utilizing radiolabeled HDLA (d, 1.09–1.21 g/ml), HDL2, and HDL3 demonstrated rapid exchange of apoA-I and apoA-II radioactivity among HDL subfractions, similar fractional rates of catabolism of apoA-I and apoA-II within HDL, and similar radioactivity decay within HDL subfractions. Mean plasma residence time was 5.74 days for radiolabeled HDL2 and 5.70 days for radiolabeled HDL3. Differences in HDL protein mass among individuals were largely due to alterations in catabolism, and in general both HDL2 and HDL3 were catabolized via a plasma and a nonplasma pathway. Data from simultaneous radiolabeled very low density lipoprotein and HDL studies in 2 individuals are consistent with the concept that apoC-II and apoC-III are catabolized at a different rate than are apoA-I and apoA-II within the HDL density range.  相似文献   

2.
Incubation of a major subfraction, HDL2b (d 1.063–1.100 g/ml), of human plasma high density lipoproteins, HDL (d 1.063–1.21 g/ml), with single-bilayer liposomes of dimyristoylphosphatidylcholine (DMPC) resulted in uptake of DMPC by the HDL2b and dissociation of lipid-free apolipoprotein A-I (apoA-I). In the presence of excess DMPC, the dissociated apoA-I was also incorporated with DMPC into discoidal complexes. Preliminary studies with model apoA-I-DMPC complexes indicated that they also can interact with native HDL2b with the resultant transfer of their DMPC to HDL2b and the concomitant release of their apoA-I. After interaction of HDL2b with DMPC liposomes, the DMPC-enriched HDL2b product showed a lower hydrated density and a larger particle size than the control HDL2b. The molecular properties of the lipoprotein product suggest that stabilization of the apoA-I-depleted HDL2b probably occurred via substitution of DMPC for the apoA-I at the HDL2b surface rather than by fusion of the apoA-I-depleted HDL2b. The above interactions of HDL2b with single-bilayer liposomes and discoidal complexes indicate pathways of phospholipid transfer relevant to the possible role of HDL in the metabolism of lipoprotein surface components in vivo.  相似文献   

3.
The interaction of human plasma high density lipoprotein HDL2 (d 1.063–1.125 g/ml) with sonicated dispersions of synthetic saturated phosphatidylcholines, dipalmitoyl- (diC16PC), dimyristoyl- (diC14PC), didodecanoyl- (diC12PC), didecanoyl- (diC10PC), and dioctanoyl- (diC8PC) L-alpha phosphatidylcholine, was investigated. Incubation (4.5 hr, 37 C) of HDL2 with diC14PC, diC12PC, diC10PC and diC8PC followed by gradient gel electrophoresis or preparative ultracentrifugation resulted in a redistribution of apolipoprotein A-I (apoA-I). The extent of redistribution depended on the molar ratio of the phospholipid to HDL2 in the incubation mixture. Redistributed apoA-I occurred as lipid-free apoA-I and/or as complexes of apoA-I with phosphatidylcholine. Increasing the length of time of ultracentrifugation of the interaction mixtures did not increase the extent of redistribution. No redistribution of apoA-I was detected following incubation and gradient gel electrophoresis or preparative ultracentrifugation of mixtures of HDL2 with dispersions of diC16PC. Presented in part at the Joint Meeting of the American Oil Chemists' Society and the Japan Oil Chemists' Society, 1979.  相似文献   

4.
The interaction of human plasma high density lipoproteins (HDL3) with discoidal complexes of apolipoprotein A-I (apoA-I) and dimyristoyl phosphatidylcholine (DMPC) containing 0, 10, 20 or 30 mol % cholesterol was investigated. Discoidal complexes containing various amounts of cholesterol were prepared by incubating apoA-I and DMPC-cholesterol liposomes for 12 hr at 25 C; the protein-lipid complexes were isolated by gel filtration chromatography on Bio-Gel A15m. Increasing the cholesterol content from 0 to 30 mol % caused a decrease in the fluidity of the discoidal complexes as determined by fluorescence polarization with 1,6-diphenyl-1,3,5-hexatriene; a reduced phase-transition amplitude; a decrease in the ratio of apoA-I to DMPC; and an increase in the width of the discoidal complexes as determined by electron microscopy after negative staining. Incubation of the apoA-I-lipid complexes with HDL3 resulted in a complete breakdown of the discoidal structures and a transfer of DMPC and cholesterol to HDL3. As a result of lipid transfer, there was an increase in the size of HDL3. These in vitro results may be of significance as they relate to the interconversion of HDL subfractions during lipoprotein-lipase-induced lipolysis of triglyceride-rich lipoproteins.  相似文献   

5.
The human plasma high density lipoproteins (HDL) are a heterogeneous ensemble of five proteins associated with both neutral and polar lipids. The sequences of all five proteins are known. ApoA-I and apoA-II are the major protein components; apoC-I, apoC-II and apoC-III are the minor protein components. All these apoproteins spontaneously recombine with phospholipids to give stable lipid-protein complexes and freely exchange between the two major HDL subclasses, HDL2 and HDL3. In addition, ApoC-I, apoC-II, and apoC-III exchange between HDL and very low density lipoproteins. Furthermore, certain HDL apoproteins are activators for plasma enzymes that are important in lipid metabolism. ApoA-I and apoC-I activate lecithin/cholesterol acyltransferase; apoC-II is an activator of lipoprotein lipase. The regions of apoC-I and apoC-II that are involved in the activation of these enzymes have been localized with synthetic peptides. Studies of synthetic and native fragments of apoA-II, apoC-I, apoC-II, and apoC-III as well as model lipid-binding peptides have identified specific regions with structural features common to lipid-binding proteins. These special properties, which include helical potential, sequences with a critical amphipathic length, and high hydrophobicity of the nonpolar side of the amphipathic helix, are the determinants of HDL structure and metabolism.  相似文献   

6.
Tian L  Jia L  Mingde F  Tian Y  Xu Y  Tian H  Yang Y 《Lipids》2006,41(8):789-796
The object of this study was to investigate the characteristics of lipid metabolism in obese subjects, with particular emphasis on the alteration of HDL subclass contents and distributions. A population of 581 Chinese individuals was divided into four groups (25 underweight subjects, 288 of desirable weight, 187 overweight, and 45 obese) according to body mass index (BMI). Apoprotein A-I (apoA-I) contents of plasma HDL subclasses were determined by 2-D gel electrophoresis associated with an immunodetection method. The concentrations of TG and the apoA-I content of pre-α1-HDL were significantly higher (P<0.01 and P<0.01, respectively), but the levels of HDL cholesterol, and the apoA-I contents of HDL2a and HDL2b were significantly lower (P<0.01, P<0.05, and P<0.01, respectively) in obese subjects than in subjects having a desirable weight. Moreover, with the elevation of BMI, small-sized pre-α1-HDL increased gradually and significantly, whereas large-sized HDL2b decreased gradually and significantly. Meanwhile, the variations in HDL subclass distribution were more obvious with the elevation of TG levels in obese as well as overweight subjects. In addition, Pearson correlation analysis revealed that BMI and TG levels were positively correlated with pre-α1-HDL but negatively correlated with HDL2b. Multiple regression analysis also showed that TG concentrations were associated independently and positively with high pre-α1-HDL and independently and negatively with low HDL2b in obese and overweight subjects. The HDL particle size was smaller in obese and overweight subjects. The shift to smaller size was more obvious with the elevation of BMI and TG, especially TG levels. These observations, in turn, indicated that HDL maturation might be abnormal, and reverse cholesterol transport might be impaired. The first two authors contributed equally to this study.  相似文献   

7.
Some of the component moieties of high denisty lipoproteins (HDL) were analyzed in normal subjects and in patients with hyperlipidemia. Apoproteins A-I and A-II were quantified by radioimmunoassay, HDL cholesterol and triglycerides were assessed on heparin-MnCl2 supernates of fasting plasmas. We found that HDL is enriched in triglycerides in all forms of hyperlipidemia, while the proportion of ApoA-II is unaltered and the proportion of ApoA-I is decreased. Thus, the composition of HDL is altered in hypertriglyceridemia. The molecular associations of ApoA-I and ApoA-II in plasma were also examined by assaying the apoprotein contents of plasma fractions prepared by ultracentrifugation and by gel filtration column chromatography. The ApoA-I contents of d<1.063 fraction increased in hyperlipidemia from <0.5% to ∼2%, but the ApoA-I contents of the d>1.21 fraction remained at <12% of total in plasmas with triglyceride levels <1500 mg/dl. d>1.21 ApoA-I rose to 23% in one plasma with a triglyceride level of >1700 mg/dl. On column chromatography, ApoA-I eluted with the lipoproteins and also in a fraction whose molecular weight (MW) appreared to be ∼50,000 daltons. The proportion of plasma ApoA-I which eluted in the 50,000 MW peak was positively correlated with plasma triglyceride levels, but at triglyceride levels of <1500 mg/dl, <20% of ApoA-I was in the 50,000 MW peak. Between levels of ∼2000 and 12,000 mg/dl, the percentage “50,000 M.W. ApoA-I” was 20–25%. The ApoA-II contents of d<1.063 fractions were also increased in hyperlipidemia, but >95% of ApoA-II was found in the HDL fractions in both normal and hyperlipidemic plasma both by column chromatography and ultracentrifugation. Thus, the molecular association of ApoA-I appears to be altered in hyperlipidemia.  相似文献   

8.
Light-to-moderate alcohol drinking is associated with a low incidence of cardiovascular disease (CVD) via an elevation of high-density lipoproteins-cholesterol (HDL-C), particularly with the short-term supplementation of alcohol. However, there is no information on the change in the HDL qualities and functionalities between non-drinkers and mild drinkers in the long-term consumption of alcohol. This study analyzed the lipid and lipoprotein profiles of middle-aged Korean female non-drinkers, mild-drinkers, and binge-drinkers, who consumed alcohol for at least 10 years. Unexpectedly, the serum levels of HDL-C and apolipoprotein A-I (apoA-I) were decreased significantly depending on the alcohol amount; the binge-drinker group showed 18% and 13% lower HDL-C (p = 0.011) and apoA-I levels (p = 0.024), respectively, than the non-drinker group. Triglyceride (TG) and oxidized species, malondialdehyde (MDA), and low-density lipoproteins (LDL) levels were significantly elevated in the drinker groups. Interestingly, the binge-drinker group showed 1.4-fold higher (p = 0.020) cholesterol contents in HDL2 and 1.7-fold higher (p < 0.001) TG contents in HDL3 than those of the non-drinker group. The mild-drinker group also showed higher TG contents in HDL3 (p = 0.032) than the non-drinker group, while cholesterol contents were similar in the HDL3 of all groups. Transmission electron microscopy (TEM) showed that the non-drinker group showed a more distinct and clear particle shape of the LDL and HDL image with a larger particle size than the drinker group. Electrophoresis of LDL showed that the drinker group had faster electromobility with a higher smear band intensity and aggregation in the loading position than the non-drinker group. The HDL level of binge drinkers showed the lowest paraoxonase activity, the highest glycated extent, and the most smear band intensity of HDL and apoA-I, indicating that HDL quality and functionality were impaired by alcohol consumption. In conclusion, long-term alcohol consumption in middle-aged women, even in small amounts, caused a significant decrease in the serum HDL-C and apoA-I with atherogenic changes in LDL and HDL, such as an increase in TG and MDA content with a loss of paraoxonase activity.  相似文献   

9.
The ultracentrifugal flotation patterns in 1.2 g/ml solvent and ultracentrifugal gradient distribution of high density lipoproteins (HDL) from the primates-human, apes and monkeys-were determined, with emphasis on the gorilla species of apes and rhesus monkeys. Diets for non-human primates were commercial chow, which is low in cholesterol. Molecular weights and protein, cholesterol, phospholipid and triglyceride compositions of various density fractions were determined on human, gorilla and rhesus HDL. The HDL2/HDL3 ratio was determined from the two peaks observed upon flotation in high salt in the analytical ultracentrifuge. The HDL2 of all three species of apes-gorillas (Gorilla gorilla), chimpanzees (Pan troglodytes) and orangutans (Pongo pygmaeus)—was always greater than HDL3, while that of all six species of Old World monkeys-Rhesus (Macaca mulatta), sooty mangabeys (Cercocebus atys), cynomolgus (Macaca fascicularis), stumptails, (Macaca arctoides) patas (Erythrocebus patas) and African greens (Cercopithecus aethiops)—was less. In addition, the HDL3 concentration in five gorillas was about 15 mg/dl as cholesterol while the HDL2 concentration was 92 mg/dl, much lower and higher, respectively, than humans. HDL2 of gorillas was similar in density and molecular weight to that of humans. The distribution of densities in gorilla HDL was predominantly in HDL2, while rhesus HDL usually, but not always, was unimodal, having a density distribution similar in heterogeneity to human HDL3, but somewhat less dense (peaking at 1.109 vs 1.129 g/ml). The molecular weight of rhesus HDL was about the same as human HDL3 in all three density subfractions and at the peak density. Likewise, the chemical compositions were similar for the subfractions 1.10–1.125 and>1.125 g/ml for rhesus HDL and human HDL3. Consequently most but not all chow-fed rhesus HDL was very similar to human HDL3, but lighter in density. A preliminary report of this study was given at the American Society for Biological Chemists Meeting in New Oreleans in April 1982.  相似文献   

10.
High density lipoproteins (HDL) were recently demonstrated in an enterocyte model (CaCo-2 cells) to mediate reverse cholesterol transport by retroendocytosis. The present study was carried out to define the role of the major HDL apoproteins (apo) A-I and apo A-II in this pathway. HDL3 was fractionated by heparin affinity chromatography into the two main fractions containing either apo A-I only (fraction A) or both apo A-I and apo A-II (fraction B). In addition, liposomes were reconstituted from purified apo A-I or apo A-II and dimyristoyl phosphatidylcholine. The cell binding properties and cholesterol efflux potential were studied in the lipoprotein fractions and the liposomes. Both fractions exhibited similar maximal binding capacities of 4427 (A) and 5041 (B) ng/mg cell protein, but their dissociation constants differed (40.5 and 167.7 μg/mL, respectively). Fraction A induced cholesterol efflux and stimulated cholesterol synthesis more than did fraction B. Fraction A mobilized both cellular free and esterified cholesterol, whereas fraction B preferentially mobilized cholesteryl esters. Liposomes, containing either apo A-I or apo A-II, showed specific binding, endocytosis and endosomal transport, and were released as intact particles. Apo A-I liposomes also mediated cholesterol efflux. In conclusion, there is evidence that the HDL3 subfractions A and B, as well as reconstituted liposomes containing either apo A-I or apo A-II, were specifically bound and entered a retroendocytosis pathway which was directly linked to cholesterol efflux. Quantitatively, the apo A-I subfraction appeared to play the dominant role in normal enterocytes. The apo A-II content of fraction B was related to the mobilization of cholesteryl esters.  相似文献   

11.
While it is known that the transfer of cholesteryl ester (CE) from high density lipoprotein (HDL) to the apo B-containing lipoproteins is increased in patients with diabetes, the extent to which the various lipoprotein fractions engage in neutral lipid exchange and the magnitude to which triglyceride (TG) is translocated is not known. To examine in greater detail neutral lipid net mass transfer in diabetes, the HDL subfractions and the apo B-containing lipoproteins were separated, and the net mass transfer of CE and TG was compared to that of control subjects. In both groups, bidirectional transfer of CE from HDL3 to very low density lipoprotein (VLDL) + low density lipoprotein (LDL) and of TG from VLDL+LDL to HDL3, took place, but this process was significantly greater (P<.01) in insulin-dependent diabetes mellitus (IDDM). In contrast, CE and TG accumulated in HDL2 to a similar degree in normal and IDDM subjects. In recombination experiments with each of the apo B-containing lipoproteins, IDDM VLDL had a greater capacity to facilitate the exchange of core lipids from both IDDM and control HDL3: on the other hand, LDL from IDDM and control subjects both donated TG and CE to HDL2 and affected little change in HDL3. These findings indicate that all the major plasma fractions normally participate in the trafficking of CE and TG among the lipoproteins during neutral lipid transfer and show that the principal perturbation in cholesteryl ester transfer in IDDM involves altered interaction between VLDL and the HDL3 subfraction.  相似文献   

12.
The content and structure of glycosphingolipids (GSL) in human plasma lipoproteins were studies. The quantitative distribution of the neutral GSL(Glc-Cer, Gal-Glc-Cer, Gal-Gal-Glc-Cer, and GalNAc-Gal-Gal-Glc-Cer) and the principal ganglioside (AcNeu-Gal-Glc-Cer) within the different lipoprotein classes was similar to that of whole plasma. The total amounts (μmol glucose/100 ml plasma) of GSL in the plasma lipoproteins of three normal subjects were VLDL (very low density lipoproteins) (trace to 0.46), LDL (low density lipoproteins) (1.08–1.48), HDL2 (high density lipoproteins2) (0.62–0.85), and HDL3 (high density lipoproteins3) (trace to 0.28). In subjects with Lp(a) lipoproteins, HDL2 rather than HDL3 contained most of the GSL in HDL. When the data were corrected for differences in the plasma concentrations of the lipoproteins, the total amounts of GSL(nmol glucose/mg lipoprotein cholesterol) were VLDL(trace to 21.20), LDL(11.70–15.36), HDL2(8.50–9.10), and HDL3(3.12). No GSL were detected in lipoprotein deficient plasma. Mass spectrometry of the trimethylsilyl derivatives of the GSL in LDL showed major fragment ions characteristic of their individual structural components. The elevated plasma levels of the GSL(2–18 fold), in a homozygote for familial hypercholesterolemia, resided in LDL which contained an absolute increase (per mg lipoprotein cholesterol) of GSL. Most, if not all, of the plasma GSL are associated with plasma lipoproteins and may have an important role in their biological functions.  相似文献   

13.
Optimal conditions for analyzing HDL2 cholesterol in small amounts of rat plasma have been studied using different concentrations of dextran sulfate and MgCl2 to precipitate lipoproteins containing apolipoprotein B and/or apo E. When the MgCl2 level was 91 mM, the supernate cholesterol was rather constant at a level of about 50–60% of the total plasma cholesterol concentration. Immunochemical determination of the apo A-I content indicated that no major losses of the HDL2 fraction took place under these conditions. The recovery of about 96% of HDL2 lipoproteins after the precipitation of rat plasma and the almost complete absence of lipoproteins belonging to the VLDL, LDL and HDL1 fractions was demonstrated by agarose gel electrophoresis. Thus, the method should be suitable for screening the HDL2 cholesterol content in small volumes of rat plasma.  相似文献   

14.
The interrelationships among fatness measures, plasma triglycerides and high density lipoproteins (HDL) were examined in 131 normal adult subjects: 38 men aged 27–46, 40 men aged 47–66, 29 women aged 27–46 and 24 women aged 47–66. None of the women were taking estrogens or oral contraceptive medication. The HDL concentration was subdivided into HDL2b, HDL2a and HDL3 by a computerized fitting of the total schlieren pattern to reference schlieren patterns. Anthropometric measures employed included skinfolds at 3 sites, 2 weight/height indices and 2 girth measurements. A high correlation was found among the various fatness measures. These measures were negatively correlated with total HDL, reflecting the negative correlation between fatness measures and HDL2 (as the sum of HDL2a and2b). Fatness measures showed no relationship to HDL3. There was also an inverse correlation between triglyceride concentration and HDL2. No particular fatness measure was better than any other for demonstrating the inverse correlation with HDL but multiple correlations using all of the measures of obesity improved the correlations. Partial correlations controlling for fatness did not reduce any of the significant correlations between triglycerides and HDL2 to insignificance. The weak correlation between fatness and triglycerides was reduced to insignificance when controlled for HDL2. Presented (in part) at the Annual Meeting of the Oil Chemists' Society in St. Louis, MO, May 1978.  相似文献   

15.
The effects of isocaloric substitutions of dietary polyunsaturated and saturated fat on the composition and function of plasma high density lipoproteins (HDLs) were studied in 3 normal subjects who were fed saturate-rich and polyunsaturate-rich diet programs. Compared to the saturated diets (P/S=0.4), polyunsaturated fat diets (P/S=4 or 2) reduced both plasma cholesterol and triglyceride levels. In 2 of the subjects, HDL cholesterol concentrations increased with polyunsaturated fat caused a reduction in HDL fatty acyl content of oleate and an increase in linoleate. To determine whether the altered composition affected the removal of cell membrane cholesterol, HDL and their subfractions, HDL2 and HDL3, which were isolated from each of the diets, were incubated with Ehrlich ascites cells in vitro. The cells were prelabeled with [3H] cholesterol, and the release of labeled cholesterol from the cells into the medium containing the various HDL fractions was determined. HDL, irrespective of the type of dietary fat, caused a release of [3H] cholesterol from the cells into the medium. The amount of [3H] cholesterol recovered in the medium was dependent on the absolute concentration of HDL cholesterol added to the cells and was independent of the type of diet. These results indicate that HDL facilitates the removal of cholesterol from cells, but that the amount and rate of removal are independent of the changes in HDL composition that can be obtained by dietary perturbations.  相似文献   

16.
The effect of varying the dietary sunflower oil/sucrose (SO/SU) ratio on rat plasma lipid concentration and lipoprotein distribution was studied. Four groups of 10 rats were fed for 4 weeks diets with varying SO/SU ratios. Lipoprotein components were then estimated in whole plasma and after cumulative density ultracentrifugation. Whole plasma triacylglycerol (TG), total cholesterol (TC) and free cholesterol (FC) decreased with increasing SO/SU ratio; the CE/FC ratio increased, because CE remained virtually unaltered. Plasma TG-lowering was due to a decrease in VLDL and LDL-TG. Protein, CE and FC in d=1.063–1.100 g/ml (HDL2b) and d=1.100–1.125 g/ml (HDL2a) lipoproteins decreased upon increasing the SO/SU ratio. In contrast, in d=1.125–1.200 g/ml (HDL3) lipoproteins, there was a concomitant increase in these components. Although increasing the SO/SU ratio effected more protein and CE transportation in HDL3 and less in HDL2, the total amount of these components in high density lipoproteins (d=1.063–1.200 g/ml) remained constant. Apo A-I and apo C-III decreased in HDL2 but increased in HDL3 upon increasing the SO/SU ratio. Also, HDL2 apo E, and the apo C-II/apo C-III and small apo B/large apo B ratios in VLDL and LDL were lowered by increasing the SO/SU ratio. The hepatic VLDL-TG output during isolated liver perfusion was lowest in rats fed the diet with the highest SO/SU ratio. In perfusate, like in plasma, the VLDL and LDL apo C-II/apo C-III ratio, as well as the small apo B/large apo B ratio, decreased upon increasing the dietary SO/SU ratio. The results indicate that there can be appreciable diet-dependent variations in plasma HDL subgroup distribution in spite of unchanged total HDL levels.  相似文献   

17.
Human low density lipoproteins (LDL) were isolated and purified from individuals having widely differing serum lipid concentrations. Very low density lipoproteins (VLDL) and high density lipoproteins (HDL) were also isolated and quantitated. HDL2 and HDL3 were separated by flotation velocity in the analytical ultracentrifuge and their relative weight percent determined. The mean density of LDL from 41 individuals was determined by flotation velocity at two different solvent densities. The mean density of LDL was directly proportional to the triglyceride (r=0.65) and VLDL (r=0.50) concentrations and inversely proportional to the HDL (r=−0.55) and HDL2 (r=−0.74) concentrations (all significant at P<0.001). The mean molecular weight of LDL from 42 individuals was determined by flotation equilibrium centrifugation. The mean molecular weight of LDL was directly proportional to the HDL (r=0.49) and HDL2 (r=0.48) concentrations and inversely proportional to the serum triglyceride (r=−0.60) and VLDL (r=−0.48) concentrations (all significant at P<0.005 except triglyceride—P<0.001). The molecular weight of LDL was inversely proportional to its density, and thus inversely proportional to its protein/lipid ratio which was confirmed by composition measurements. The density and molecular weight of LDL had no relationship to the concentration of LDL (r=0.04 and 0.03). A preliminary report of this study was given at the American Society for Biological Chemists Meeting in St. Louis, June 1981.  相似文献   

18.
Background and aims: to analyze the gender and age differences in the distribution of the high‐density lipoprotein (HDL) subclasses among the Chinese population, and to clarify the mechanism of these changes. Methods and results: the apoA‐I contents of the plasma HDL subclasses were determined by 2‐DE coupled with immunodetection in 324 men (including 186 normolipidemic subjects) and 186 women (including 114 normolipidemic subjects). The contents of preβ1‐HDL and HDL3 (HDL3c, HDL3b, HDL3a) were significantly lower, whereas the contents of HDL2a and HDL2b were higher for women than for men in the <50 years age group. Moreover, the contents of preβ1‐HDL and HDL3 were higher for female subjects; the HDL2a and HDL2b contents were lower for both female and male subjects in the 50–59, 60–69, and ≥70 years age groups versus the subjects of the same gender in the <50 years age group. When compared to the normolipidemic premenopausal women, preβ1‐HDL, HDL3b, and HDL3a increased while HDL2b decreased significantly in normolipidemic men and postmenopausal women. Conclusions: the contents of the large‐sized HDL particles HDL2b were higher, but the contents of the small‐sized HDL particles (preβ1‐HDL, HDL3b, HDL3a) were lower for women versus men in the <50 years age group. Meanwhile, the gender difference in distribution of the HDL subclass narrowed obviously with advancing age. Moreover, the characteristics of the HDL subclass distribution profile for the normolipidemic postmenopausal women resembled those for the normolipidemic men.  相似文献   

19.
Copper deficiency induces hypercholesterolemia in the rat. This hypercholesterolemia is mainly due to an increase in apo E-rich high density lipoproteins (HDL1). The present study was undertaken to determine whether the HDL increase could be explained by altered low-molecular weight apolipoprotein (apo) synthesis in the liver. The effect of copper deficiency on apo A-I, apo A-IV and apo E concentrations in plasma, as well as on respective mRNA levels and synthesis in the liver, were therefore investigated. We observed that the increased HDL1 levels in the plasma of copper-deficient rats were associated with a significant rise in plasma apo E concentrations; however, plasma apo A-I and apo A-IV concentrations remained unchanged. Liver apo synthesis and respective apo mRNA levels were not significantly altered in copper-deficient animals when compared to control rats. No changes in apo E mRNA levels in various tissues from copper-deficient, as compared to control rats, were noted. Based on the data obtained, it was concluded that the observed changes in plasma lipoprotein and apo concentrations are not related to changes in low-molecular weight apo synthesis in the liver. The mechanisms of the impaired catabolism of HDL1 should be further evaluated to possibly explain the observed increase in this fraction in copper-deficient rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号