首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
增强的典型相关分析及其在人脸识别特征融合中的应用   总被引:2,自引:0,他引:2  
在传统的典型相关分析(CCA)基础上,定义了类别相关性,提出了增强典型相关分析(ECCA)方法.对于一个模式空间的2个观测空间(对任意模式都有2种观测向量),ECCA能够找到这2个观测空间对类别而言更有意义的相关子空间,且同时保持了投影分量的无关性.实验结果表明,ECCA优于CCA,GCCA融合方法.  相似文献   

2.
构建了一种基于核函数的典型相关分析的特征融合算法。首先,利用核函数将图像矩阵映射到核空间,再抽取同一模式的两组特征向量,在两组特征向量之间建立描述它们的相关性的判据准则函数;然后依此准则函数抽取两组典型投影矢量集;最后通过给定的特征融合策略抽取组合的典型相关特征以用于分类识别。该算法将两组特征向量之间的相关性特征作为有效鉴别信息,既可以很好地融合信息,又可以有效地去除特征之间的信息冗余,并且避免了对映射后的数据矩阵进行分解,从而简化了数据运算。在AR、PIE、ORL、Yale人脸数据库及UCI手写体数字库上的实验结果证明了该方法的有效性和稳定性。  相似文献   

3.
通过对传统的基于向量的典型相关分析(CCA)方法进行改进,提出了一种新的直接基于特征矩阵的二维典型相关分析方法(2DCCA),并将其应用于人脸识别的特征融合过程中。较基于向量的典型相关分析,该方法的优点主要有两点:第一,该方法计算过程中构造的协方差矩阵维数大幅度减小,这在一定程度上避免了人脸识别中存在的“高维小样本问题”;第二,由于协方差矩阵维数的缩减,使特征抽取的速度明显提高。最后在ORL标准人脸库和AR大型人脸数据库上的实验结果有效地验证了这两点。  相似文献   

4.
稀疏保持典型相关分析及在特征融合中的应用   总被引:3,自引:0,他引:3  
稀疏保持投影(Sparsity preserving projections, SPP)由于保持了数据间的稀疏重构性, 因而获取的投影向量满足旋转、尺度和平移的不变性, 并能够在无标签的情况下提取样本的自然鉴别信息, 在人脸识别领域取得了较为成功的应用. 本文在典型相关分析(Canonical correlation analysis, CCA)的基础上引入稀疏保持项, 提出一种稀疏保持典型相关分析(Sparsity preserving canonical correlation analysis, SPCCA). 该方法不仅实现了两组特征集鉴别信息的有效融合, 同时对提取特征间的稀疏重构性加以约束, 增强了特征的表示和鉴别能力. 在多特征手写体字符集与人脸数据集上的实验结果表明, SPCCA比CCA具有更优的识别性能.  相似文献   

5.
人脸识别具有小样本、高维等特性。典型相关分析算法(CCA)无法准确提取人脸识别特征,不能准确刻画人脸图像的局部变化,导致人脸识别率低。为提高人脸识别率,提出一种核主成分分析与典型相关分析相融合的人脸识别算法(KPCA-CCA)。首先将人脸图像划分多个子模块,然后提取局部特征,同时采用KPCA提取全局特征,并采用CCA将两种特征进行融合,降低特征向量的维数,最后采用子模式进行人脸识别,以投票方式确定人脸的类别。采用AR与Yale数据集对KPCA-CC性能进行测试,仿真结果表明,相对于对比模型,KPCA-CCA提高了人脸识别的识别率。  相似文献   

6.
一种组合特征抽取的新方法   总被引:10,自引:0,他引:10  
该文提出了一种基于特征级融合的特征抽取新方法,首先,给出了一种合理的特征融合策略,即利用复向量给出组合特征的表示,将特征空间从实向量空间拓广到复向量空间,然后,发展了具有统计不相关性的鉴别分析的理论,并将其用于复向量空间内最优鉴别特征的抽取,最后,在Concordia大学的CENPARMI手写体阿拉伯数字数据库以及南京理工大学NUST603HW手写汉字库上的试验结果表明,所提出的组合特征抽取方法不仅具有很强的维数压缩能力,而且较大幅度地提高了识别率。  相似文献   

7.
为了提高情感识别的正确率,针对单模情感特征及传统特征融合方法识别低的缺陷,提出了一种核典型相关分析算法(KCCA)的多特征(multi-features)融合情感识别方法(MF-KCCA)。分别提取语音韵律特征和分数阶傅里叶域表情特征,利用两种特征互补性,采用KCCA将它们进行融合,降低特征向量的维数,利用最近邻分类器进行情感分类和识别。采用加拿大瑞尔森大学数据库进行仿真实验,结果表明,MF-KCCA有效提高了语音情感的识别率。  相似文献   

8.
子模式典型相关分析及其在人脸识别中的应用   总被引:4,自引:1,他引:3       下载免费PDF全文
传统的典型相关分析 (CCA) 是有效的特征提取方法之一, 已广泛应用于包括人脸识别在内的模式识别的许多领域. 但在人脸识别为代表的高维小样本问题上该方法存在如下不足: 1) 人脸识别的小样本特性使 CCA 两组特征矢量构成的总体协方差矩阵奇异, 难以直接应用; 2) 作为一种全局线性投影方法, 不足以很好地描述非线性的人脸识别问题; 3) 缺乏对局部变化的识别鲁棒性. 本文受已提出的子模式主分量分析 (SpPCA) 的启发, 提出了子模式典型相关分析 (SpCCA). 该方法将局部与全局特征矢量之间的相关性特征作为有效的判别信息, 既达到了融合局部与全局信息的目的, 又消除了特征之间的信息冗余. 通过子模式的划分, SpCCA 避免了小样本问题, 更好地描述了非线性的人脸识别问题; 并通过投票方式融合结果, 增强了对局部变化的鲁棒性. 在 AR 与 Yale 两个人脸数据集上的实验证实了该方法比对比方法不仅有更优的识别性能, 而且更加稳定和鲁棒.  相似文献   

9.
基于典型相关分析的组合特征抽取及脸像鉴别   总被引:14,自引:0,他引:14  
利用典型相关分析的思想,提出了一种基于特征级融合的组合特征抽取新方法.首先,抽取同 一模式的两组特征矢量,给出描述两组特征矢量之间相关性的判据准则函数;然后依此准则 抽取它们的典型相关特征,构成有效鉴别特征矢量用于识别.该方法巧妙地将两组特征矢量之 间的相关性特征作为有效判别信息,既达到了信息融合之目的,又消除了特征之间的信息冗余 ,为两组特征融合用于分类识别提供了新的思路.此外,从理论上进一步剖析了所提出的方法 之所以能有效地用于识别的内在本质.在Yale和ORL标准人脸数据库上的实验结果证实了所提 算法的有效性和稳定性,而且识别率大大高于用单一特征进行识别的结果.  相似文献   

10.
提出了一种融合典型相关分析与最大散度差鉴别分析的特征抽取新方法。该方法首先利用典型相关分析方法实现了特征信息的融合,有效地消除了特征之间的信息冗余。然后,通过采用最大散度差鉴别分析方法将训练样本中的类别信息加以充分的利用,从而有效的提高了人脸识别的正确率。最后,在ORL标准人脸库上和Yale人脸库上的实验结果验证了本文算法的有效性。  相似文献   

11.
红外目标特征分析及融合特征提取   总被引:5,自引:0,他引:5  
针对复杂背景下的红外弱小目标的特征提取问题,提出了一种实用的红外目标的特征量提取算法.算法依据红外目标的辐射特性与背景之间的相关关系,得到目标的灰度和梯度特征量,通过融合处理,得到加权归一化的融合特征矢量.实验证明,这一融合特征矢量具有良好的稳定性和鲁棒性,同时该特征矢量计算量小,有利于工程实现.  相似文献   

12.
局部保持投影(locality preserving projection,LPP)和线性鉴别分析(linear discrimin antanalysis,LDA)是两种有效的一维特征提取方法,广泛应用于人脸识别领域。但采用一维特征提取方法时会存在列向量化时样本的结构信息被破坏和样本在提取特征时必须对协方差矩阵进行特征分解,对于高维小样本的问题很容易出现协方差矩阵奇异的问题。文中提出将二维局部保持投影(2DLPP)和二维线性鉴别分析(2DLDA)这两种方法在特征层进行融合并应用在人脸识别。基于人脸库AR上的实验表明,该方法比传统的IJPP和LDA识别性能更高,因此可作为一种新的人脸识别方法。  相似文献   

13.
混合概率典型相关性分析   总被引:4,自引:0,他引:4  
典型相关性分析(canonical correlation analysis, CCA)是一种用来分析2组随机变量之间相关性的统计分析工具,但作为一种线性数学模型,CCA不足以揭示真实世界中大量存在的非线性相关现象.采用局部化的方法,在概率典型相关性分析(probabilistic CCA, PCCA)的基础上,使用概率混合模型框架,提出了混合概率典型相关性分析模型(mixture of probabilistic CCA, MixPCCA)以及估计模型参数的2阶段期望最大化(expectation maximization, EM)算法,并给出了使用聚类融合确定局部线性模型数量的方法和MixPCCA模型应用于模式识别的理论框架.在手写体数据集USPS和MNIST上的实验证明,MixPCCA模型通过混合多个局部线性PCCA模型不仅提供了一种捕捉复杂的全局非线性相关性的解决方案,而且还具备检测只在局部区域才存在的相关性的能力.  相似文献   

14.
针对数据场环境下多维数据的低维特征提取问题,本文将数据之间的相互作用纳入其相关性求解中,提出一种基于数据场的典型相关分析(Data field based canonical correlation analysis, DFCCA)方法. DFCCA提取的特征具有良好的分布特性,原空间上相隔较远的数据点对的特征聚集在一个较小区域内,而相邻数据点对的特征却有规律地分布在其他点所聚集区域的周围.此特性使得DFCCA具有较好的边界辨识能力,将其应用于图像分割的实验结果表明, DFCCA提取的复杂图像边界具有较好的保真度.  相似文献   

15.
针对二维典型相关分析(2DCCA)中类标矩阵维数较大及算法耗时过多的问题,提出一种改进的2DCCA特征提取方法。利用图像的频谱性质定义低维的类标矩阵,从有利于模式分类的角度构造出新的准则函数,采用二维主成分分析对所得特征进一步降维,得到更具分类判别能力的低维特征。在ORL和组合人脸数据库上的实验结果表明,该特征具有较好的分类能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号