首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of vesication from sulfur mustard remains unknown in spite of 80 years of investigation. We recently reported sulfur mustard-related inhibition of one or more protein (serine/threonine) phosphatases in tissue cytosol in vitro, suggesting a mechanism common to other vesicants such as cantharidin and Lewisite. Our investigation showed that this inhibition was related to the concentration of 2,2'-thiobis-ethanol (thiodiglycol), the hydrolysis product of sulfur mustard, rather than to the concentration of mustard itself. Related work showed an increase in the rate of NAD (but not NADP) reduction upon the addition of thiodiglycol to mouse liver cytosol. This result provided evidence that metabolism beyond thiodiglycol may be contributing to protein phosphatase inhibition. This observation indicated that metabolism involving one or more dehydrogenases may be necessary to produce the ultimate inhibitor of the protein phosphatases. We report here that thiodiglycol is a substrate for horse liver alcohol dehydrogenase (Km = 3.68+/-0.45 mM and Vmax = 0.22 +/-0.01 micromol min(-1) mg protein(-1)) and for pyridine nucleotide-linked enzymes in mouse liver and human skin cytosol. The alcohol dehydrogenase-specific inhibitor 4-methylpyrazole inhibited the oxidation of thiodiglycol by the pure horse liver enzyme as well as by the enzymes in human skin and mouse liver cytosol, indicating that the activity in the tissue preparations is also alcohol dehydrogenase.  相似文献   

2.
The NADH absorbance spectrum of nicotinoprotein (NADH-containing) alcohol dehydrogenase from Amycolatopsis methanolica has a maximum at 326 nm. Reduced enzyme-bound pyridine dinucleotide could be reversibly oxidized by acetaldehyde. The fluorescence excitation spectrum for NADH bound to the enzyme has a maximum at 325 nm. Upon excitation at 290 nm, energy transfer from tryptophan to enzyme-bound NADH was negligible. The fluorescence emission spectrum (excitation at 325 nm) for NADH bound to the enzyme has a maximum at 422 nm. The fluorescence intensity is enhanced by a factor of 3 upon binding of isobutyramide (Kd = 59 microM). Isobutyramide acts as competitive inhibitor (Ki = 46 microM) with respect to the electron acceptor NDMA (N,N-dimethyl-p-nitrosoaniline), which binds to the enzyme containing the reduced cofactor. The nonreactive substrate analogue trifluoroethanol acts as a competitive inhibitor with respect to the substrate ethanol (Ki = 1.6 microM), which binds to the enzyme containing the oxidized cofactor. Far-UV circular dichroism spectra of the enzyme containing NADH and the enzyme containing NAD+ were identical, indicating that no major conformational changes occur upon oxidation or reduction of the cofactor. Near-UV circular dichroism spectra of NADH bound to the enzyme have a minimum at 323 nm (Deltaepsilon = -8.6 M-1 cm-1). The fluorescence anisotropy decay of enzyme-bound NADH showed no rotational freedom of the NADH cofactor. This implies a rigid environment as well as lack of motion of the fluorophore. The average fluorescence lifetime of NADH bound to the enzyme is 0.29 ns at 20 degreesC and could be resolved into at least three components (in the range 0.13-0.96 ns). Upon binding of isobutyramide to the enzyme-containing NADH, the average excited-state lifetime increased to 1.02 ns and could be resolved into two components (0.37 and 1.11 ns). The optical spectra of NADH bound to nicotinoprotein alcohol dehydrogenase have blue-shifted maxima compared to other NADH-dehydrogenase complexes, but comparable to that observed for NADH bound to horse liver alcohol dehydrogenase. The fluorescence lifetime of NADH bound to the nicotinoprotein is very short compared to enzyme-bound NADH complexes, also compared to NADH bound to horse liver alcohol dehydrogenase. The cofactor-protein interaction in the nicotinoprotein alcohol dehydrogenase active site is more rigid and apolar than that in horse liver alcohol dehydrogenase. The optical properties of NADH bound to nicotinoprotein alcohol dehydrogenase differ considerably from NADH (tightly) bound to UDP-galactose epimerase from Escherichia coli. This indicates that although both enzymes have NAD(H) as nonexchangeable cofactor, the NADH binding sites are quite different.  相似文献   

3.
A previously unreported enzymatic activity is described for monomers of the beta 1 beta 1 isoenzyme of human alcohol dehydrogenase that were prepared from dimeric enzyme by freeze-thaw in liquid nitrogen. Whereas the dimeric enzyme has optimal activity at low substrate concentrations (2.5 mM ethanol, 50 microM NAD+; "low Km" activity), the monomer has its highest activity at high substrate concentrations (1.5 M ethanol, 2.5 mM NAD+; "high Km" activity). While the activity of the monomer does not appear to be saturated at 1.5 M ethanol, its maximal activity at this high ethanol concentration exceeds the Vmax of the dimer by about 3-fold. The apparent Km of NAD+ with monomers is 270 microM, and no activity could be detected with nicotinamide mononucleotide as cofactor. During gel filtration the high Km activity elutes at a lower apparent molecular weight position than the dimer. The kinetics of monomer-to-dimer reassociation are consistent with a second-order process with a rate constant of 240 M-1 s-1. The reassociation rate is markedly enhanced by the presence of NAD+. During refolding of beta 1 beta 1 following denaturation in 6 M guanidine hydrochloride, an enzyme species with high Km activity and spectral properties similar to the freeze-thaw monomer is observed, indicating that a catalytically active monomer is an intermediate in the refolding pathway. The enzymatic activity of the monomer implies that the intersubunit contacts of beta 1 beta 1 are not crucial in establishing a catalytically competent enzyme. However, the differences in specific activity and Km between monomer and dimer suggest that dimerization may serve to modulate the catalytic properties.  相似文献   

4.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco-specific carcinogen in animals. Our previous studies indicated that there are differences between rodents and humans for the enzymes involved in the activation of NNK. To determine if the patas monkey is a better animal model for the activation of NNK in humans, we investigated the metabolism of NNK in patas monkey lung and liver microsomes and characterized the enzymes involved in the activation. In lung microsomes, the formation of 4-oxo-1-(3-pyridyl)-1-butanone (keto aldehyde), 4-(methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanone (NNK-N-oxide), 4-hydroxy-1-(3-pyridyl)-1-butanone (keto alcohol), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was observed, displaying apparent Km values of 10.3, 5.4, 4.9, and 902 microM, respectively. NNK metabolism in liver microsomes resulted in the formation of keto aldehyde, keto alcohol, and NNAL, displaying apparent Km values of 8.1, 8.2, and 474 microM, respectively. The low Km values for NNK oxidation in the patas monkey lung and liver microsomes are different from those in human lung and liver microsomes showing Km values of 400-653 microM, although loss of low Km forms from human tissue as a result of disease, surgery or anesthesia cannot be ruled out. Carbon monoxide (90%) significantly inhibited NNK metabolism in the patas monkey lung and liver microsomes by 38-66% and 82-91%, respectively. Nordihydroguaiaretic acid (a lipoxygenase inhibitor) and aspirin (a cyclooxygenase inhibitor) decreased the rate of formation of keto aldehyde and keto alcohol by 10-20 % in the monkey lung microsomes. Alpha-Napthoflavone and coumarin markedly decreased the oxidation of NNK in monkey lung and liver microsomes, suggesting the involvement of P450s 1A and 2A6. An antibody against human P450 2A6 decreased the oxidation of NNK by 12-16% and 22-24% in the patas monkey lung and liver microsomes, respectively. These results are comparable to that obtained with human lung and liver microsomes. Coumarin hydroxylation was observed in the patas monkey lung and liver microsomes at a rate of 16 and 4000 pmol/min/mg protein, respectively, which was 5-fold higher than human lung and liver microsomes, respectively. Immunoblot analysis demonstrated that the P450 2A level in the individual patas monkey liver microsomal sample was 6-fold greater than in an individual human liver microsomal sample. Phenethyl isothiocyanate, an inhibitor of NNK activation in rodents and humans, decreased NNK oxidation in the monkey lung and liver microsomes displaying inhibitor concentration resulting in 50% inhibition of the activity (IC50) values of 0.28-0.8 microM and 4.2-6.8 microM, respectively. The results demonstrate the similarities and differences between species in the metabolic activation of NNK. The patas monkey microsomes appear to more closely resemble human microsomes than mouse or rat enzymes and may better reflect the activation of NNK in humans.  相似文献   

5.
The apparent Michaelis constant (Km) for glucose-6-phosphate of the enzyme glucose-6-phosphate dehydrogenase has been measured in extracts prepared from biopsies of normal human skin and from both affected and apparently normal skin of patients with lichen planus. No differences of Km were found and starch gel electrophoresis of extracts from lichen planus lesions and normal controls showed similar patterns when stained for glucose-6-phosphate dehydrogenase activity. These results do not support the view that lichen planus is an inborn error of metabolism in which the structure of glucose-6-phosphate dehydrogenase of skin is affected.  相似文献   

6.
Evidence indicates that endotoxin-mediated liver injury plays an important role in the pathogenesis of alcoholic liver disease. Elevated plasma endotoxin level in alcoholics is suggested to be caused by enteric bacterial overgrowth and/or increased intestinal permeability to endotoxin. In this study, the effect of ethanol and acetaldehyde on the paracellular permeability was evaluated in Caco-2 cell monolayers. Ethanol was administered into the incubation medium, whereas acetaldehyde was administered by exposing cell monolayers to vapor phase acetaldehyde, or by direct administration of an acetaldehyde generating system (AGS), ethanol + NAD+ + alcohol dehydrogenase. Paracellular permeability was assessed by measuring transepithelial electrical resistance (TER), sodium chloride dilution potential, and unidirectional flux of D-[2-(3)H]mannitol. Administration of ethanol up to 900 mM produced no significant effect on paracellular permeability. Vapor phase acetaldehyde, generated from 5 to 167 mM acetaldehyde solutions in neighboring wells, resulted in a time- and dose-dependent increase in acetaldehyde concentration (99 to 760 microM) in the buffer bathing cell monolayer. Acetaldehyde induced a reduction of TER and dilution potential, and an elevation of mannitol flux in a time and concentration-related manner, without affecting the ability of cells to exclude trypan blue. Removal of acetaldehyde after 1, 2, or 4 hr treatment and subsequent incubation in the absence of acetaldehyde resulted in a time-dependent reversal of TER to baseline values. Administration of AGS also reduced TER and dilution potential, associated with an increase in mannitol flux. This effect of AGS was prevented by 4-methylpyrazole, an alcohol dehydrogenase inhibitor. These results show that acetaldehyde, but not ethanol, reversibly increases the paracellular permeability of Caco-2 cell monolayer.  相似文献   

7.
Although reactive oxygen species (ROS) have been implicated in the etiology of alcohol-induced liver disease, neither their relative contribution to cell death nor the cellular mechanisms mediating their formation are known. The purpose of this study was to test the hypothesis that acute and chronic ethanol exposure enhances the mitochondrial generation of ROS in fresh, isolated hepatocytes. Acute ethanol exposure stimulated ROS production, increased the cellular NADH/NAD+ ratio, and decreased hepatocyte viability slightly, which was prevented by pretreatment with 4-methylpyrazole (4-MP), an inhibitor of alcohol dehydrogenase. Similarly, xylitol, an NADH-generating compound, enhanced hepatocyte ROS production and decreased viability. Incubation with pyruvate, an NADH-oxidizing compound, and cyanamide, an inhibitor of aldehyde dehydrogenase, significantly decreased ROS levels in acute ethanol-treated hepatocytes. Chronic ethanol consumption produced a sixfold increase in hepatocyte ROS production compared with levels measured in controls. Hepatocytes from ethanol-fed rats were less viable compared with controls, e.g., viability was 68% +/- 2% (ethanol) versus 83% +/- 1% (control) after 60 minutes of incubation. Antimycin A increased ROS production and decreased cell viability; however, the toxic effect of antimycin A was more pronounced in ethanol-fed hepatocytes. These results suggest that acute and chronic ethanol exposure exacerbates mitochondrial ROS production, contributing to cell death.  相似文献   

8.
The relationship between the size of the substrate binding pocket and the catalytic reactivities with varied alcohols was studied with the Saccharomyces cerevisiae alcohol dehydrogenase I (ScADH) and compared with the liver enzymes from horse (EqADH, EE isoenzyme) and monkey (MmADH alpha, alpha-isoenzyme). The yeast enzyme is most active with ethanol, and its activity decreases as the size of the alcohol is increased, whereas the activities of the liver enzymes increase with larger alcohols. The substrate pocket in ScADH was enlarged by single substitutions of Thr-48 to Ser (T48S), Trp-57 to Met (W57M), and Trp-93 to Ala (W93A), and a double change, T48S:W93A, and a triple, T48S:W57M:W93A. The T48S enzyme has the same pattern of activity (V/K) as wild-type ScADH for linear primary alcohols. The W57M enzymes have lowered reactivity with primary and secondary alcohols. The W93A and T48S:W93A enzymes resemble MmADH alpha in having an inverted specificity pattern for primary alcohols, being 3- and 10-fold more active on hexanol and 350- and 540-fold less active on ethanol, and are as reactive as the liver enzymes with long chain primary alcohols. The three Ala-93 enzymes also acquired weak activity on branched chain alcohols and cyclohexanol.  相似文献   

9.
The specific growth rate is a key control parameter in the industrial production of baker's yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h-1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol . g of biomass-1 . h-1 at D = 0.40 h-1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h-1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol . g of dry yeast biomass-1 . h-1 at D = 0.025 h-1 to 20.5 mmol of ethanol . g of dry yeast biomass-1 . h-1 at D = 0.28 h-1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol . g of dry yeast biomass-1 . h-1 at D = 0.40 h-1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.  相似文献   

10.
Conformational changes of yeast alcohol dehydrogenase in trifluoroethanol solutions have been followed by fluorescence emission and circular dichroism spectroscopy. At low concentration (less than 5%), trifluoroethanol shows a reversible inhibition competitive to ethanol and noncompetitive to NAD+. The inhibition constants for native and structural-zinc-removed yeast alcohol dehydrogenase were 5.8 and 1.1 mM, respectively, suggesting that the active site becomes more flexible after the structural zinc is removed. At higher trifluoroethanol concentrations the enzyme was irreversibly inactivated. Comparison of inactivation and conformational changes of yeast alcohol dehydrogenase denatured in trifluoroethanol solutions shows that the extent of inactivation is larger than the extent of conformational changes at the same trifluoroethanol concentration. The results obtained from circular dichroism spectra show that the presence of trifluoroethanol can induce the formation of secondary structure of the enzyme.  相似文献   

11.
Cytochromes mediating the biotransformation of dextromethorphan to dextrorphan and 3-methoxymorphinan, its principal metabolites in man, have been studied by use of liver microsomes and microsomes containing individual cytochromes expressed by cDNA-transfected human lymphoblastoid cells. In-vitro formation of dextrorphan from dextromethorphan by liver microsomes was mediated principally by a high-affinity enzyme (Km (substrate concentration producing maximum reaction velocity) 3-13 microM). Formation of dextrorphan from 25 microM dextromethorphan was strongly inhibited by quinidine (IC50 (concentration resulting in 50% inhibition) = 0.37 microM); inhibition by sulphaphenazole was approximately 18% and omeprazole and ketoconazole had minimal effect. Dextrorphan was formed from dextromethorphan by microsomes from cDNA-transfected lymphoblastoid cells expressing CYP2C9, -2C19, and -2D6 but not by those expressing CYP1A2, -2E1 or -3A4. Despite the low in-vivo abundance of CYP2D6, this cytochrome was identified as the dominant enzyme mediating dextrorphan formation at substrate concentrations below 10 microM. Formation of 3-methoxy-morphinan from dextromethorphan in liver microsomes proceeded with a mean Km of 259 microM. For formation of 3-methoxymorphinan from 25 microM dextromethorphan the IC50 for ketoconazole was 1.15 microM; sulphaphenazole, omeprazole and quinidine had little effect. 3-Methoxymorphinan was formed by microsomes from cDNA-transfected lymphoblastoid cells expressing CYP2C9, -2C19, -2D6, and -3A4, but not by those expressing CYP1A2 or -2E1. CYP2C19 had the highest affinity (Km = 49 microM) whereas CYP3A4 had the lowest (Km = 1155 microM). Relative abundances of the four cytochromes were determined in liver microsomes by use of the relative activity factor approach. After adjustment for relative abundance, CYP3A4 was identified as the dominant enzyme mediating 3-methoxymorphinan formation from dextromethorphan, although CYP2C9 and -2C19 were estimated to contribute to 3-methoxymorphinan formation, particularly at low substrate concentrations. Although formation of dextrorphan from dextromethorphan appears to be sufficiently specific to be used as an in-vitro or in-vivo index reaction for profiling of CYP2D6 activity, the findings raise questions about the specificity of 3-methoxymorphinan formation as an index of CYP3A activity.  相似文献   

12.
A NAD-dependent, oxygen-labile alcohol dehydrogenase was purified from Desulfovibrio gigas. It was decameric, with subunits of M(r) 43,000. The best substrates were ethanol (Km, 0.15 mM) and 1-propanol (Km, 0.28 mM). N-terminal amino acid sequence analysis showed that the enzyme belongs to the same family of alcohol dehydrogenases as Zymomonas mobilis ADH2 and Bacillus methanolicus MDH.  相似文献   

13.
We studied the incorporation of different radioactively labeled exogenous substrates into the lipids of rat hepatocytes previously incubated with ethanol. Glycerol, oleate, and serine were all incorporated into neutral lipids to a significantly greater degree in the presence of ethanol, the increase in radioactivity in the triacylglycerol fraction being quite substantial. A similar ethanol-induced increase was found in the incorporation of these substrates into the various phospholipids. This lipogenic activity did not occur when the metabolism of ethanol was blocked by 4-methylpyrazole, an inhibitor of hepatic ADH (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) activity, thus demonstrating that one of the initial effects of ethanol on lipid biosynthesis was mediated by some products of its metabolism in the liver. The only alteration that persisted in the presence of 4-methylpyrazole was an inhibitory effect on the esterification of free cholesterol from oleate, suggesting that ethanol specifically inhibits hepatic ACAT (acyl CoA:cholesterol O-acyltransferase, EC 2.3.1.26) activity.  相似文献   

14.
Since allyl alcohol and ethanol are both metabolized by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), ethanol could affect allyl-alcohol induced toxicity under in vivo coexposure conditions. Male Sprague-Dawley rats were treated with ethanol (2 g/kg, i.p.) simultaneously or 2 h before with allyl alcohol (40 mg/kg, i.p.). Coexposure to allyl alcohol and ethanol resulted in neither enhancement nor protection in allyl alcohol-induced hepatotoxicity at 24 h. However, markedly increased lethality was observed under our coexposure conditions. Pretreatment with 4-methylpyrazole (4-MP) to inhibit ADH did not result in increased lethality to allyl alcohol or ethanol alone, but significantly reduced the lethality of the combined treatment. In contrast, ALDH inhibition increased the lethality of allyl alcohol alone as well as that of the combined allyl alcohol and ethanol treatment. Kinetic studies revealed that combined treatment with allyl alcohol and ethanol resulted in higher blood allyl alcohol levels compared to allyl alcohol alone, and these were accompanied by greater lethality. ADH inhibition increased allyl alcohol blood levels significantly when rats were treated with allyl alcohol alone or allyl alcohol plus ethanol, leading to protection against lethality. In contrast, ALDH inhibition did not affect blood allyl alcohol levels, but resulted in increased lethality. These data suggest a possible role for a metabolite of allyl alcohol, acrolein, in the increased lethality of allyl alcohol and ethanol coexposure in rats.  相似文献   

15.
We report the cDNA sequence and catalytic properties of a new member of the short chain dehydrogenase/reductase superfamily. The 1134-base pair cDNA isolated from the human liver cDNA library encodes a 317-amino acid protein, retinol dehydrogenase 4 (RoDH-4), which exhibits the strongest similarity with rat all-trans-retinol dehydrogenases RoDH-1, RoDH-2, and RoDH-3, and mouse cis-retinol/androgen dehydrogenase (相似文献   

16.
In an attempt to assess the effects of methylmercury on ethanol metabolism, Sprague-Dawley rats were treated with a daily dose (10 mg/kg i.p.) of methylmercuric chloride for 2 consecutive days and given a test dose (0.4 g/kgi.v.) of ethanol 24 hr after the last treatment. Blood ethanol levels were measured using gaschromatography by the direct introduction of blood samples into the sample vaporizing apparatus attached to the chromatograph. While treatment with methylmercury elicited a slight retardation in the ethanol elimination from the blood during 30 to 90 min, methylmercury did not essentially alter ethanol metabolism. There was no significant change in hepatic alcohol dehydrogenase activity of methylmercury-treated rats. By contrast, the activity of alcohol dehydrogenase purified from liver or yeast was remarkably inhibited by methyl-mercury and the type of inhibition proved to be non-competitive. Moreover, the inhibited activity was reactivated easily by sulfhydryl agents. From these results, it is conceivable that methylmercury has little influence on ethanol metabolism in vivo because of its non-specific binding with sulfhydryl groups in the organism.  相似文献   

17.
Dynamics of formation of by-products was studied with the following yeast races: Sacch. cerevisiae, strain Odesskaya-14 (baker's yeast); Sacch. vini, strain Prikumskaya 80/9 (wine yeast). The yeast cultures were found to be very similar by the rate of biomass accumulation, ethanol production, and the fractional composition of nitrogen compounds. The concentration of accumulated higher alcohols depended on the mass of yeast cells, their growth rate, and the duration of cultivation.  相似文献   

18.
The first-pass clearance of dietary N-nitrosodimethylamine (NDMA) by the liver is the most important factor in the pharmacokinetics of this carcinogen in the rat, but is less important in the pharmacokinetics of N-nitrosodiethylamine (NDEA). The reason for the difference in clearance of these two nitrosamines is not known. These experiments were carried out to see whether the general characteristics of the clearance of these two carcinogens in vivo could be reproduced in the perfused liver, and whether the clearance could be correlated with the Michaelis-Menten parameters Km and Vmax for their metabolism. If this could be done one would be able to predict the possible extent of first-pass clearance of nitrosamines in man from measurement of Km and Vmax for nitrosamine metabolism by the human liver. The Km (22 microM) and Vmax (10.2 and 13.4 nmol/g liver/min) for the metabolism of NDMA by slices from two human livers, the inhibition of that metabolism by ethanol (Ki 0.5 microM), and the rate of N-7 methylation of DNA when slices are incubated with NDMA, were measured. These results are similar to those reported previously with rat liver. The Km (27 microM) for the metabolism of NDEA by rat liver slices and the inhibition of that metabolism by ethanol (Ki 1 microM) were estimated from the rate of ethylation of the DNA of the slices. The clearance of both these nitrosamines by the perfused rat liver was measured, and the results appeared to parallel those in vivo with a striking difference between the clearance of NDMA and NDEA. The maximal rate of clearance of NDMA was 11.2 nmol/g liver/min and of NDEA 8.9 nmol/g liver/min, similar to the Vmax for metabolism of NDMA by liver slices and to the estimated maximal rate of liver metabolism of both nitrosamines in the living rat. However, although the Km for metabolism of these two nitrosamines by liver slices is similar (about 25 microM), the logarithmic mean sinusoidal concentration [see Bass and Keiding, Biochem Pharmacol 37: 1425-1431, 1988] giving half maximal clearance during perfusion (the equivalent to Km) was 2.3 microM for NDMA and 10.6 microM for NDEA. The almost 5-fold difference between these two values is the basis for the difference between the clearance of the two nitrosamines.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Human and rat cDNAs encoding thyroid hormone sulfotransferases have been isolated from their liver cDNA libraries. The isolated sulfotransferases, termed rat ST1B1 and human ST1B2, share 77 and 74% homologies at nucleotide and deduced amino acid levels. These forms showed less than 36 and 56% homologies to hydroxysteroid and aryl sulfotransferases, indicating that they constitute a new gene subfamily of aryl sulfotransferase. Expression of ST1B1 and ST1B2 in COS-1 cells resulted in the appearance of 33.0 and 32.5 kDa proteins, respectively, whose mobilities were identical with proteins detected in rat and human livers in Western blots using antibodies raised against ST1B1 and ST1B2 produced in Escherichia coli. The recombinant forms catalyzed sulfation of p-nitrophenol, 3,3',5-triiodothyronine (T3) and dopamine, but not of beta-estradiol and dehydroepiandrosterone. ST1B1 and ST1B2 showed higher affinities for formation of T3 sulfate (apparent Km 40.2 and 63.5 microM, respectively) than did thermostable phenol sulfotransferase ST1A3 (apparent Km 413 microM) or thermolabile phenol sulfotransferase ST1A5 (apparent Km 180 microM). These data indicate that the newly characterized sulfotransferases constitute a distinct ST1 subfamily of enzymes catalyzing the sulfation of T3 as a typical endogenous substrate in rats and humans.  相似文献   

20.
2-Phenoxyethanol applied in methanol was absorbed (64 +/- 4.4% at 24 hr) through unoccluded rat skin in vitro in the static diffusion cell with ethanol/water as receptor fluid. By comparison (43 +/- 3.7% in 24 hr) was absorbed in the flow-through diffusion system with tissue culture medium as receptor fluid. 2-Phenoxyethanol applied in methanol was absorbed (59.3 +/- 7.0% at 6 hr) through unoccluded human skin in vitro in the flow-through diffusion cell with tissue culture medium. With both unoccluded cells, 2-phenoxyethanol was lost by evaporation but occlusion of the static cell reduced evaporation and increased total absorption to 98.8 +/- 7.0%. Skin, post mitochondrial fraction, metabolized phenoxyethanol to phenoxyacetic acid at 5% of the rate for liver. Metabolism was inhibited by 1 mM pyrazole, suggesting involvement of alcohol dehydrogenase. However, first-pass metabolism of phenoxyethanol to phenoxyacetic acid was not detected during percutaneous penetration through viable rat skin in the flow-through system. First-pass metabolism in the skin does not therefore have an influence on systemic availability of dermally absorbed phenoxyethanol. These measures of phenoxyethanol absorption through rat and human skin in vitro agree well with those obtained previously in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号