首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous TiO2 was prepared by simply controlling the hydrolysis of Ti(OBu)4 with the help of acetic acid. The mesoporous TiO2 had a well-crystallized anatase phase and a high surface area of 290 m2 g−1 with a pore size of about 4 nm. The anatase phase and the mesoporous structure were maintained in the VOx/TiO2 catalyst with a monolayer dispersion of V2O5, however, the surface area decreased to 126 m2 g−1. The catalyst was highly active and selective for methanol oxidation, giving about 55% conversion of methanol and 85% selectivity to dimethoxymethane at 423 K.  相似文献   

2.
TiO2-supported manganese oxide catalysts were prepared from two different precursors, manganese nitrate (MN) and manganese acetate (MA), and these samples were characterized by BET, XRD, TG/DTA, XPS and FT–IR. The characterization results showed that the MN precursor resulted primarily in MnO2, accompanied with some Mn-nitrate, while the MA precursor caused mainly Mn2O3 species. These two different precursors also led to different surface Mn atom concentrations indicated by XPS and NH3 adsorption. Consequently, the higher low-temperature activity of MnOx/TiO2 from MA precursor was attributed to higher surface Mn concentration and the surface Mn2O3 species.  相似文献   

3.
MnOx–CeO2 mixed oxide catalysts prepared by sol–gel method were tested for the catalytic combustion of chlorobenzene (CB), as a model of chlorinated aromatic volatile organic compounds (CVOCs). MnOx–CeO2 catalysts with the different ratio of Mn/Ce + Mn were found to possess high catalytic activity for catalytic combustion of CB, and MnOx(0.86)–CeO2 was the most active catalyst, on which the complete combustion temperature (T90%) of chlorobenzene was 236 °C. The stability of MnOx–CeO2 catalysts in the CB combustion was investigated. MnOx–CeO2 catalysts with high Mn/Ce + Mn ratios present high stable activity, which is related to their high ability to remove Cl species adsorbed and a large amount of active surface oxygen.  相似文献   

4.
The TiO2 support materials were synthesized by a chemical vapor condensation (CVC) method and the subsequent MnOx/TiO2 catalysts were prepared by an impregnation method. Catalytic oxidation of toluene on the MnOx/TiO2 catalysts was examined with ozone. These catalysts had a smaller particle size (9.1 nm) and a higher surface area (299.5 m2 g−1) compared to MnOx/P25-TiO2 catalysts. The catalysts show high catalytic activity with the ozone oxidation of toluene even at low temperature. As a result, the synthesized support material by the CVC method gave more active catalyst.  相似文献   

5.
Cr-doped Li3V2−xCrx(PO4)3/C (x = 0, 0.05, 0.1, 0.2, 0.5, 1) compounds have been prepared using sol–gel method. The Rietveld refinement results indicate that single-phase Li3V2−xCrx(PO4)3/C with monoclinic structure can be obtained. Although the initial specific capacity decreased with Cr content at a lower current rate, both cycle performance and rate capability have excited improvement with moderate Cr-doping content in Li3V2−xCrx(PO4)3/C. Li3V1.9Cr0.1(PO4)3/C compound presents an initial capacity of 171.4 mAh g−1 and 78.6% capacity retention after 100 cycles at 0.2C rate. At 4C rate, the Li3V1.9Cr0.1(PO4)3/C can give an initial capacity of 130.2 mAh g−1 and 10.8% capacity loss after 100 cycles where the Li3V2(PO4)3/C presents the initial capacity of 127.4 mAh g−1 and capacity loss of 14.9%. Enhanced rate and cyclic capability may be attributed to the optimizing particle size, carbon coating quality, and structural stability during the proper amount of Cr-doping (x = 0.1) in V sites.  相似文献   

6.
Powders of spinel Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) were successfully synthesized by solid-state method. The structure and properties of Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) were examined by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electronic microscope (SEM), galvanostatic charge–discharge test and cyclic voltammetry (CV). XRD shows that the V5+ can partially replace Ti4+ and Li+ in the spinel and the doping V5+ ion does almost not affect the lattice parameter of Li4Ti5O12. Raman spectra indicate that the Raman bands corresponding to the Li–O and Ti–O vibrations have a blue shift due to the doping vanadium ions, respectively. SEM exhibits that Li4Ti5−xVxO12 (0.05 ≤ x ≤ 0.25) samples have a relative uniform morphology with narrow size distribution. Charge–discharge test reveals that Li4Ti4.95V0.05O12 has the highest initial discharge capacity and cycling performance among all samples cycled between 1.0 and 2.0 V; Li4Ti4.9V0.1O12 has the highest initial discharge capacity and cycling performance among all samples cycled between 0.0 and 2.0 V or between 0.5 and 2.0 V. This excellent cycling capability is mainly due to the doping vanadium. CV reveals that electrolyte starts to decompose irreversibly below 1.0 V, and SEI film of Li4Ti5O12 was formed at 0.7 V in the first discharge process; the Li4Ti4.9V0.1O12 sample has a good reversibility and its structure is very advantageous for the transportation of lithium-ions.  相似文献   

7.
Electrical conductivity measurements on EUROCAT V2O5–WO3/TiO2 catalyst and on its precursor without vanadia were performed at 300°C under pure oxygen to characterize the samples, under NO and under NH3 to determine the mode of reactivity of these reactants and under two reaction mixtures ((i) 2000 ppm NO + 2000 ppm NH3 without O2, and (ii) 2000 ppm NO + 2000 ppm NH3 + 500 ppm O2) to put in evidence redox processes in SCR deNOx reaction.It was first demonstrated that titania support contains certain amounts of dissolved W6+ and V5+ ions, whose dissolution in the lattice of titania creates an n-type doping effect. Electrical conductivity revealed that the so-called reference pure titania monolith was highly doped by heterovalent cations whose valency was higher than +4. Subsequent chemical analyses revealed that so-called pure titania reference catalyst was actually the WO3/TiO2 precursor of V2O5–WO3/TiO2 EUROCAT catalyst. It contained an average amount of 0.37 at.% W6+dissolved in titania, i.e. 1.07 × 1020 W6+ cations dissolved/cm3 of titania. For the fresh catalyst, the mean amounts of W6+ and V5+ ions dissolved in titania were found to be equal to 1.07 × 1020 and 4.47 × 1020 cm−3, respectively. For the used catalyst, the mean amounts of W6+ and V5+ ions dissolved were found to be equal to 1.07 × 1020 and 7.42 × 1020 cm−3, respectively. Since fresh and used catalysts have similar compositions and similar catalytic behaviours, the only manifestation of ageing was a supplementary progressive dissolution of 2.9 × 1020 additional V5+ cations in titania.After a prompt removal of oxygen, it appeared that NO alone has an electron acceptor character, linked to its possible ionosorption as NO and to the filling of anionic vacancies, mostly present on vanadia. Ammonia had a strong reducing behaviour with the formation of singly ionized vacancies. A subsequent introduction of NO indicated a donor character of this molecule, in opposition to its first adsorption. This was ascribed to its reaction with previously adsorbed ammonia strongly bound to acidic sites. Under NO + NH3 reaction mixture in the absence of oxygen, the increase of electrical conductivity was ascribed to the formation of anionic vacancies, mainly on vanadia, created by dehydroxylation and dehydration of the surface. These anionic vacancies were initially subsequently filled by the oxygen atom of NO. No atoms, resulting from the dissociation of NO and from ammonia dehydrogenation, recombined into dinitrogen molecules. The reaction corresponded to
. In the presence of oxygen, NO did not exhibit anymore its electron acceptor character, since the filling of anionic vacancies was performed by oxygen from the gas phase. NO reacted directly with ammonia strongly bound on acidic sites. A tentative redox mechanism was proposed for both cases.  相似文献   

8.
Zhihui Zhu  Dehua He   《Fuel》2008,87(10-11):2229-2235
CeO2–TiO2 (Ce:Ti = 0.25–9, molar ratio) catalysts were synthesized by a sol–gel method and the catalytic performances were evaluated in the selective synthesis of isobutene and isobutane from CO hydrogenation under the reaction conditions of 673–748 K, 1–5 MPa and 720–3000 h−1. The physical properties, such as specific surface area, cumulative pore volume, average pore diameter, crystal phase and size, of the catalysts were characterized by N2 adsorption/desorption and XRD. All the CeO2–TiO2 composite oxides showed higher surface areas than pure TiO2 and CeO2. No TiO2 phase was detected on the samples of CeO2–TiO2 in which TiO2 contents were in the range of 10–50 mol%. Crystalline Ce2O3 was detected in CeO2–TiO2 (8:2). The reaction conditions, temperature, pressure and space velocity, had obvious influences on the CO conversion and distribution of the products over CeO2–TiO2 (8:2) catalyst.  相似文献   

9.
The NOx storage and reduction (NSR) catalysts Pt/K/TiO2–ZrO2 were prepared by an impregnation method. The techniques of XRD, NH3-TPD, CO2-TPD, H2-TPR and in situDRIFTS were employed to investigate their NOx storage behavior and sulfur-resisting performance. It is revealed that the storage capacity and sulfur-resisting ability of these catalysts depend strongly on the calcination temperature of the support. The catalyst with theist support calcined at 500 °C, exhibits the largest specific surface area but the lowest storage capacity. With increasing calcination temperature, the NOx storage capacity of the catalyst improves greatly, but the sulfur-resisting ability of the catalyst decreases. In situ DRIFTS results show that free nitrate species and bulk sulfates are the main storage and sulfation species, respectively, for all the catalysts studied. The CO2-TPD results indicate that the decomposition performance of K2CO3 is largely determined by the surface property of the TiO2–ZrO2 support. The interaction between the surface hydroxyl of the support and K2CO3 promotes the decomposition of K2CO3 to form –OK groups bound to the support, leading to low NOx storage capacity but high sulfur-resisting ability, while the interaction between the highly dispersed K2CO3 species and Lewis acid sites gives rise to high NOx storage capacity but decreased sulfur-resisting ability. The optimal calcination temperature of TiO2–ZrO2 support is 650 °C.  相似文献   

10.
11.
Nanocrystalline TiO2, CeO2 and CeO2-doped TiO2 have been successfully prepared by one-step flame spray pyrolysis (FSP). Resulting powders were characterized with X-ray diffraction (XRD), N2-physisorption, Transmission Electron Microscopy (TEM) and UV-Vis spectrophotometry. The TiO2 and CeO2-doped TiO2 nanopowders were composed of single-crystalline spherical particles with as-prepared primary particle size of 10-13 nm for Ce doping concentrations of 5-50 at%, while square-shape particles with average size around 9 nm were only observed from flame-made CeO2. The adsorption edge of resulting powder was shifted from 388 to 467 nm as the Ce content increased from 0 to 30 at% and there was an optimal Ce content in association with the maximum absorbance. This effect is due to the insertion of Ce3+/4+ in the TiO2 matrix, which generated an n-type impurity band.  相似文献   

12.
Oxygen storage capacity (OSC) of CeO2–ZrO2 solid solution, CexZr(1−x)O4, is one of the most contributing factors to control the performance of an automotive catalyst. To improve the OSC, heat treatments were employed on a nanoscaled composite of Al2O3 and CeZrO4 (ACZ). Reductive treatments from 700 to 1000 °C significantly improved the complete oxygen storage capacity (OSC-c) of ACZ. In particular, the OSC-c measured at 300 °C reached the theoretical maximum with a sufficient specific surface area (SSA) (35 m2/g) after reductive treatment at 1000 °C. The introduced Al2O3 facilitated the regular rearrangement of Ce and Zr ions in CeZrO4 as well as helped in maintaining the sufficient SSA. Reductive treatments also enhanced the oxygen release rate (OSC-r); however, the OSC-r variation against the evaluation temperature and the reduction temperature differed from that of OSC-c. OSC-r measured below 200 °C reached its maximum against the reduction temperature at 800 °C, while those evaluated at 300 °C increased with the reduction temperature in the same manner as OSC-c.  相似文献   

13.
Electrocatalysts of the general formula IrxRu1−xO2 were prepared using Adams’ fusion method. The crystallite characterization was examined via XRD, and the electrochemical properties were examined via cyclic voltammetry (CV) in, linear sweep voltammetry (LSV) and chronopotentiometry measurements in 0.5 M H2SO4. The electrocatalysts were applied to a membrane electrode assembly (MEA) and studied in situ in an electrolysis cell through electrochemical impedance spectroscopy (EIS) and stationary current density–potential relations were investigated. The IrxRu1−xO2 (x = 0.2, 0.4, 0.6) compounds were found to be more active than pure IrO2 and more stable than pure RuO2. The most active electrocatalyst obtained had a composition of Ir0.2Ru0.8O2. With an Ir0.2Ru0.8O2 anode, a 28.4% Pt/C cathode and the total noble metal loading of 1.7 mg cm−2, the potential of water electrolysis was 1.622 V at 1 A cm−2 and 80 °C.  相似文献   

14.
Ammonium nitrate is thermally stable below 250 °C and could potentially deactivate low temperature NOx reduction catalysts by blocking active sites. It is shown that NO reduces neat NH4NO3 above its 170 °C melting point, while acidic solids catalyze this reaction even at temperatures below 100 °C. NO2, a product of the reduction, can dimerize and then dissociate in molten NH4NO3 to NO+ + NO3, and may be stabilized within the melt as either an adduct or as HNO2 formed from the hydrolysis of NO+ or N2O4. The other product of reduction, NH4NO2, readily decomposes at ≤100 °C to N2 and H2O, the desired end products of DeNOx catalysis. A mechanism for the acid catalyzed reduction of NH4NO3 by NO is proposed, with HNO3 as an intermediate. These findings indicate that the use of acidic catalysts or promoters in DeNOx systems could help mitigate catalyst deactivation at low operating temperatures (<150 °C).  相似文献   

15.
The CO2 reforming of CH4 to synthesis gas by using praseodymium modified hexaaluminate La1−xPrxNiAl11O19 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) as catalysts was studied. The modifier Pr improved the reducibility and catalytic activity of Ni ions as active component in the hexaaluminate lattices, especially the conversion of CH4 and CO2 reached 89.62% and 92.94%, respectively over La0.8Pr0.2NiAl11O19. It was found that the addition of Pr can promote the electronic transformation between the Ni ions and the La ions to maintain Ni at a lower valence, which promotes the activation of CH4.  相似文献   

16.
Catalytic CO oxidation and C3H6 combustion have been studied over La1−xSrxCrO3 (x = 0.0–0.3) oxides prepared by solid-state reaction and characterised by X-ray diffraction (XRD), nitrogen adsorption (BET analysis) and X-ray photoelectron spectroscopy (XPS). The expected orthorhombic perovskite structure of the chromite is observed for all levels of substitution. However, surface segregation of strontium along with a chromium oxidation process, leading to formation of Cr6+-containing phases, is produced upon increasing x and shown to be detrimental to the catalytic activity. Maximum activity is achieved for the catalyst with x = 0.1 in which mixed oxide formation upon substitution of lanthanum by strontium in the chromite becomes maximised.  相似文献   

17.
Ag/Al2O3 catalysts with 1 wt% SiO2 or TiO2 doping in alumina support have been prepared by wet impregnation method and tested for sulphur tolerance during the selective catalytic reduction (SCR) of NOx using propene under lean conditions. Ag/Al2O3 showed 44% NOx conversion at 623 K, which was drastically reduced to 21% when exposed to 20 ppm SO2. When Al2O3 support in Ag/Al2O3 was doped with 1 wt% SiO2 or TiO2 the NOx conversion remained constant in presence of SO2 showing the improved sulphur tolerance of these catalysts. Subsequent water addition does not induce significant deactivation. On the contrary, a slight promotional effect on the activity of NO conversion to nitrogen is observed after Si and Ti incorporation. FTIR study showed the sulphation of silver and aluminum sites of Ag/Al2O3 catalysts resulting in the decrease in the formation of reactive intermediate species such as –NCO, which in turn decreases NOx conversion to N2. In the case of Ag/Al2O3 doped with SiO2 or TiO2, formation of silver sulphate and aluminum sulphate was drastically reduced, which was evident in FTIR resulting in remarkable improvement in the sulphur tolerance of Ag/Al2O3 catalyst. These catalysts before and after the reaction have been characterized with various techniques (XRD, BET surface area, transmittance FTIR and pyridine adsorption) for physico-chemical properties.  相似文献   

18.
Catalytic light-off of a stream of NO, H2, CO in an excess O2 has been studied over various metal oxides loading 1 wt% Pt. Because a low-surface area Y2O3 (<5 m2 g−1) was found to exhibit the highest de-NOx activity, a mesoporous Y2O3 was then synthesized from an yttrium-based surfactant mesophase templated by dodecyl sulfate , which was anion-exchanged by acetate (AcO = CH3COO). The product showed a 3-D mesoporosity with a large surface area (396 m2 g−1) and the Pt-supported catalyst achieved much improved light-off characteristics suitable for the low-temperature de-NOx in the presence of CO and excess O2.  相似文献   

19.
Titania-modified silicas with different weight% of TiO2 were prepared by sol–gel method and used as supports for Pd (1 wt%) catalysts. The obtained materials were tested in the oxidation of methane under lean conditions in absence and in presence of SO2. Test reactions were consecutively performed in order to evaluate the thermal stability and poisoning reversibility. Increasing amounts of TiO2 improved the catalytic activity, with an optimum of the performance for 10 wt% TiO2 loading. Moreover, the titania-containing catalysts exhibited a superior tolerance towards SO2 by either adding it to the reactants or feeding it as a pure pretreatment atmosphere at 350 °C. Catalysts were characterized by XPS, XRD, FT-IR and BET measurements. According to the structural and surface analyses, the mixed oxides contained Si–O–Ti linkages which were interpreted as being responsible for the enhanced intrinsic activity of supported PdO with respect to PdO on either pure SiO2 or pure TiO2. Moreover, the preferential interaction of the sulfur molecule with TiO2 and the easy SOx desorption from high surface area silica were the determining factors for the superior SO2 tolerance of the TiO2-doped catalysts.  相似文献   

20.
The effect of SO2 for the selective reduction of NO by C3H8 on Ag/Al2O3 was investigated in the presence of excess oxygen and water vapor. The NOx conversion decreased permanently even in the presence of a low concentration of SO2 (0.5–10 ppm) at <773 K. The increase in SO2 concentration resulted in a large decrease in NOx conversion at 773 K. However, when the reaction temperature was more than 823 K, the activity of Ag/Al2O3 remained constant even in the presence of 10 ppm of SO2. The sulfate species formed on the used Ag/Al2O3 were characterized by a temperature programmed desorption method. The sulfated species formed on silver should mainly decrease the deNOx activity on the Ag/Al2O3. The sulfated Ag/Al2O3 was appreciably regenerated by thermal treatment in the deNOx feed at 873 K. The moderate activity remains at 773 K in the presence of 1 ppm SO2 for long time by the heat treatment at every 20 h intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号