首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了以N,N,N’,N’-四辛基-3-氧戊二酰胺(TODGA)和N,N-二己基辛酰胺(DHOA)为萃取剂、正十二烷为稀释剂对Am(Ⅲ)和三价镧系元素的萃取行为,主要考察了萃取剂浓度、HNO3浓度、NaNO3浓度、金属离子浓度和温度的影响。结果表明:随着TODGA浓度的增加,TODGA/正十二烷和TODGA-DHOA/正十二烷两种萃取体系对Am(Ⅲ)和三价镧系元素的萃取分配比显著增加,DHOA对三价锕系和镧系萃取能力很弱,而DHOA的加入,对TODGA/正十二烷萃取Am(Ⅲ)和三价镧系元素具有一定抑制作用。TODGA萃取三价镧系元素的分配比随着镧系原子序数的增加而增加,Am的分配比与Eu相近。TODGA萃取稀土元素是放热反应,萃取过程中焓变起主导作用,吉布斯自由能变(-ΔG)变化的规律也表明随着镧系原子序数的增加,TODGA对其萃取能力增强。通过对TODGA萃取Am(Ⅲ)和三价镧系元素机理探讨,得到萃取反应方程式均为:M3+aq+3NO-3,aq+3TODGAorg→M(NO3)3·3TODGAorg  相似文献   

2.
研究了酰胺荚醚N,N,N′,N′-四丁基-3-氧-戊二酰胺(TBOPDA)和N-503(N,N′-二乙基庚酰胺)以及TBOPDA与N-503的组合萃取剂在硝酸介质中对U(Ⅵ)、Pu(Ⅳ)、Am(Ⅲ)、Eu(Ⅲ)和其他一些金属离子的萃取行为,稀释剂为40%正辛醇-煤油。用0.075mol/LTBOPDA+0.5mol/LN-503/40%辛醇-煤油为萃取剂,从模拟高放废液中分离U(Ⅵ)、Pu(Ⅳ)、Am(Ⅲ)和Eu(Ⅲ)的微型混合澄清槽实验结果表明在A槽,大于99.99%的U(Ⅵ)、Pu(Ⅳ)、Eu(Ⅲ)和Am(Ⅲ)被萃入有机相;在R1槽,U(Ⅵ)被定量反萃,83%的Pu(Ⅳ)和36%的Am(Ⅲ)被反萃入水相;在R2槽中残留的Pu(Ⅳ)、Am(Ⅲ)和Eu(Ⅲ)可被定量反萃下来。该流程可有效提取高放废液中的锕系元素,并可对其进行组分离。  相似文献   

3.
以正十二烷作为稀释剂,研究了N,N'-二(2-乙基己基)二甘酰胺酸(HDEHDGA,简称HL)萃取剂对硝酸介质中Dy(Ⅲ)离子的萃取性能。结果表明:该萃取剂对Dy(Ⅲ)有良好的萃取性能,在硝酸浓度为0.3~4.0mol/L时,Dy(Ⅲ)的分配比(D(Dy))随水溶液中平衡酸度的增加先减小后增大,在HNO_3浓度大约为1.0mol/L时,分配比最小。萃取分配比随水相硝酸浓度变化的关系表明,HDEHDGA萃取Dy(Ⅲ)的机理随硝酸浓度变化而不同。从3.0mol/L HNO_3中萃取Dy(Ⅲ)的分配比与萃取剂浓度及硝酸根浓度的关系表明,萃取过程中HDEHDGA主要以中性萃取剂形式与Dy(Ⅲ)配位,萃取反应方程式可能为:Dy(Ⅲ)+2HL+3NO_3~-=Dy(Ⅲ))(HL)_2(NO_3)_3该反应为放热反应,反应的热焓为-63.38kJ/mol,降低萃取温度有利于HDEHDGA对Dy(Ⅲ)的萃取。  相似文献   

4.
TODGA/正十二烷萃取Am(Ⅲ)的动力学   总被引:1,自引:0,他引:1  
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂,正十二烷为稀释剂,研究了该萃取体系在恒界面池中萃取Am(Ⅲ)的动力学,考察了搅拌转速、两相界面面积、萃取剂浓度、金属离子浓度、酸度和温度等因素对Am(Ⅲ)萃取行为的影响,并推导了相应的萃取机理。结果表明:(1) 搅拌转速在130 r/min以下时,0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的过程为扩散控制类型,在搅拌转速为150 r/min以上时,则属于化学反应控制的动力学控制模式;(2) 求得了在(170±2) r/min、温度为(25±0.1) ℃时0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率方程:
r0=(dcorg(M)/dt)t=0=k•(S/V)c0.94aq,0(Am)c1.05aq,0(HNO3)c1.19org,0(TODGA)
在25℃下,求得表观速率常数k=(24.2±3.4)×10-3mol-2.18•L2.18•min-1•cm;(3) 0.1mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率随着温度的升高而增大,求得表观活化能Ea=(25.94±0.98)kJ/mol。  相似文献   

5.
合成了水溶性的2,6-二[1-(羟丙基)-1H-1,2,3-三唑-4-基]吡啶(PTD),研究了以N,N,N′,N′-四辛基-3-氧杂戊二酰胺(TODGA)为萃取剂、正十二烷为稀释剂时,PTD对Am和Eu的反萃行为。研究了两相接触时间、PTD浓度、初始硝酸浓度和温度对Am和Eu分配比的影响。结果表明:Am与PTD形成1∶1型和1∶2型配合物,Eu与PTD形成1∶1型配合物;PTD反萃TODGA-TBP中Am和Eu的反应均为吸热过程。在PTD浓度一定的情况下,反萃硝酸浓度小于0.7 mol/L时,PTD可以实现TODGA中的Am与Eu的反萃分离。  相似文献   

6.
研究了N,N,N′,N′-四异丁基-3-氧杂戊二酰胺(TiBOGA)-40%正辛醇/煤油对超铀元素及Tc的萃取,研究结果表明,0.2mol/L,TiBOGA-40%正辛醇/煤油对Tc(Ⅶ),Am(Ⅲ),Np(Ⅳ),Np(Ⅴ),Pu(Ⅲ),Pu(Ⅳ)均有一定萃取能力,在酸度为1mol/L HNO3的模拟料液中,其分配比分别为:2.25,>2000,43,0.734,>2000,34。TiBOGA-40%正辛醇/煤油对各种离子的萃取能力受酸度和盐析剂浓度影响较大,用0.1mol/L HNO3能将除Am(Ⅲ)以外的其它几种离子从有机相中反萃下来。0.6mol/L H2C2O4对超铀元素的反萃效果都很好,经过1次或2次反萃,反萃率均可达99%以上。  相似文献   

7.
以40 %辛醇/煤油为稀释剂,研究了3种荚醚:N,N,N',N'-四丁基-3-氧-戊二酰胺(TBOPDA)、N,N,N',N'-四异丁基-3-氧-戊二酰胺(TiBOPDA)和N,N,N',N'-四丁基-3,6-二氧-辛二酰胺(TBDOODA)在硝酸介质中对Am(Ⅲ)和Eu(Ⅲ)的萃取热力学.TBOPDA、TiBOPDA和TBDOODA萃取镅的反应焓变分别为:-80.54、-81.99和-75.88 kJ/mol;求出了萃取反应自由能和熵值的变化;观测了不同平衡酸度下萃入有机相中金属离子的可见吸收光谱.研究结果表明,水相酸度在一定范围内变化时,有机相中金属离子的吸收峰位置和形状没有改变,说明萃取机理在一定酸度内不变.萃合物红外光谱的测量结果表明,萃取金属离子后,3种荚醚的羰基吸收峰均发生了显著位移,TBOPDA和TBDOODA的醚氧键位移分别为6 cm-1和3 cm-1.  相似文献   

8.
双配位基有机磷萃取剂DHDECMP萃取Am(Ⅲ)的研究   总被引:3,自引:1,他引:2  
本文研究了用双配位基有机磷萃取剂N,N—二乙胺甲酰甲撑膦酸二已酯(DHDECMP)萃取镅的各种影响因素,包括DHDECMP的纯化,稀释剂的选择以及硝酸浓度,萃取剂浓度,盐析剂浓度,萃取平衡时间和温度等,并测定了模拟料液的Am的分配系数。还确定了反萃条件。研究了萃取机理,其主要萃取反应为: Am~(3 ) 3 NO_3~- 3DHDECMPAm(NO_3)_3.3 DHDECMP萃取过程是放热反应,其反应热△H_(Am)■-7.6 kcal/mol。  相似文献   

9.
酰胺化合物对U(Ⅵ),Eu(Ⅲ),Sr(Ⅱ)和Fe(Ⅲ)的萃取   总被引:9,自引:4,他引:5  
研究了酰胺荚醚(PAⅡ)和二(1-甲基庚基)乙酰胺(N-503)有硝酸溶液中对U(Ⅵ),Eu(Ⅲ),Sr(Ⅱ)和Fe(Ⅲ)的萃取。结果表明,PAⅡ对U(Ⅵ),Eu(Ⅲ),Sr(Ⅱ)均有良好的萃取性能,N-503只萃取U(Ⅵ),两种萃取剂对Fe(Ⅲ)均不萃取。  相似文献   

10.
在硝酸介质中,研究了6,6′-二(5,6-二乙基-1,2,4-三嗪-3-基)-2,2′-联吡啶(6,6′-bis(5,6-diethyl-1,2,4-triazin-3-yl)-2,2′-bipyridine,C2-BTBP)/CHCl3体系对镅和镧系元素的萃取行为。重点考察了萃取时间、萃取剂浓度、水相硝酸浓度等因素对C2-BTBP萃取Am的影响。结果表明:C2-BTBP萃取镅时,10min达到平衡;D(Am)随酸度增大先增大后减小。在考察的酸度范围内,镧系元素的分配比均较小。提出了C2-BTBP/CHCl3体系分离三价锕系与镧系元素的概念流程,并经串级实验验证。萃取剂(C2-BTBP/CHCl3)浓度为0.04mol/L,料液酸度为1.0mol/L HNO3,洗涤液酸度为1.0mol/L HNO3,流比为AF∶AX∶AS=1∶1∶0.5,经6级萃取、4级洗涤后,镅的萃取率为99.93%,Am中Ln的去污因子大于103,Am中镧系元素的含量小于0.03%,可较好的实现镅和镧系元素的分离。  相似文献   

11.
对正辛基苯基-N,N′-二异丁基胺甲酰甲基氧化膦(CMPO)是一种对镧系和锕系金属离子具有很好萃取效率的萃取剂。本工作以两种CMPO修饰杯[4]芳烃分子a(上缘)和b(下缘)为主体,考察了其对三价152 Eu和241 Am核素离子的萃取分离性能,并对溶剂、酸度、盐析剂和时间等影响因素进行了研究。结果表明:化合物a具有较好的241 Am萃取分离选择性,而正十二烷+正辛醇(体积比1∶1)为较合适的萃取溶剂,同时在c(H+)为1~2mol/L、萃取时间为10min、c(NaNO3)4mol/L的条件下,萃取剂达到最佳241 Am/152 Eu分离性能。  相似文献   

12.
Am(Ⅲ)在Al2O3和石英上的吸附行为   总被引:1,自引:1,他引:0  
研究了Am(Ⅲ)在Al2O3和石英上的吸附行为,探讨了水相pH值、总CO2-3和SO2-4浓度(1.0×10-3~2.0×10-1 mol/L)、腐殖酸和Am(Ⅲ)浓度等因素对吸附的影响,并对可能的吸附机理进行了分析,同时以1.0 mol/L HCl做为解吸剂,对吸附平衡后的固相进行了解吸实验.结果表明,随着水相pH值的升高,Am(Ⅲ) 在Al2O3和石英上的吸附分配比增大,水相的化学组分及其相应浓度增大对Am(Ⅲ)在石英上的吸附影响较明显;Am(Ⅲ)在Al2O3和石英上以界面配合物的形式吸附,且可用Freundlich吸附等温式描述;水相中腐殖酸浓度增大,Am(Ⅲ)在Al2O3和石英上的吸附降低.  相似文献   

13.
以N,N,N′,N′-四辛基-2-甲基-3-氧戊二酰胺(Me-TODGA)或N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂、磷酸三丁酯(TBP)为相改良剂、煤油为稀释剂,对比研究了水相酸度、萃取剂浓度、锶浓度、温度对Me-TODGA-TBP体系和TODGA-TBP体系萃取Sr~(2+)的影响,并采用斜率法确定了萃合物的组成。结果表明,2种酰胺荚醚萃取Sr~(2+)的分配比(D_(Sr))随HNO_3浓度(c(HNO_3)=0.1~2.7 mol/L)、萃取剂浓度(c(萃取剂)=0.05~0.3 mol/L)的增加而增大,随Sr~(2+)浓度的升高略有下降,随温度的升高而下降。2种萃取剂的萃合物组成分别为Sr(NO_3)_2·3Me-TODGA和Sr(NO_3)_2·2TODGA。萃取反应的ΔH分别为-69.46 kJ/mol和-51.39 kJ/mol,ΔS分别为-190.5 J/(mol·K)和-128.4 J/(mol·K),ΔG分别为-12.68 kJ/mol和-13.12 kJ/mol。相比之下,Me-TODGA萃取Sr~(2+)的分配比不到TODGA的1/5。  相似文献   

14.
研究了二氯苯基二硫代膦酸 (DCPDTPI)对示踪量Am3+ 和Eu3+ 的萃取。实验结果表明 ,此萃取剂优先萃取Am3+ ,当萃取剂浓度为 0 1mol/L ,pH =2 73时 ,最大的分离因数β(Am3+ /Eu3+ ) max=8。用ICP MS法同时测定了DCPDTPI对除钷以外的所有镧系元素的萃取分配比 ,并计算了Am3+ 与这些元素的分离因数  相似文献   

15.
DHDECMP萃取Np(Ⅳ)的研究   总被引:1,自引:1,他引:0  
一、引言 近年来国外不少文献报道了有关双配位基有机磷萃取剂在核燃料后处理中用以回收或清除锕系元素的研究工作,而对这些元素的萃取行为的系统研究报道甚少。在文献[8—10]中,我们用双配位基中性有机磷萃取剂N,N-二乙胺甲酰甲撑膦酸二己酯(简称DHDECMP)对萃取Am(Ⅲ),Pu(Ⅳ),Nd(Ⅲ)和硝酸的各种影响因素及Am(Ⅲ)与Pu(Ⅳ)的分离条件进  相似文献   

16.
正与对称取代的双酰胺荚醚萃取剂相比,不对称取代的N,N′-二甲基-N,N′-二正辛基-3-氧杂-戊二酰胺(DMDODGA)对锕系离子(尤其锕酰离子)的萃取分配比更高。为研究DMDODGA对锕酰离子和三价镧系离子的萃取行为,本工作用光谱滴定、X射线衍射单晶结构分析、分配比斜率分析等研究了DMDODGA及其小分子相似物N,N,N′,N′-四甲基-3-氧杂-戊二酰胺(TMDGA)与U(Ⅵ)及典型三价镧系离子的配位化学。利用  相似文献   

17.
为进一步研究N,N′-二甲基-N,N′-二辛基双酰胺(DMDODGA)对镧系和锕系元素的萃取过程,以40%正辛醇/煤油作为稀释剂,研究了DMDODGA对硝酸环境中Ce(Ⅲ)的萃取行为。结果表明,DMDODGA在40%正辛醇/煤油中表现出对Ce(Ⅲ)很好的萃取能力,但Ce(Ⅲ)的萃取趋势随硝酸浓度而变化,且分配比随硝酸浓度变化的峰值随萃取剂浓度的上升而向低酸度方向移动。使用斜率法,在0.1 mol/L和0.5 mol/L酸度下,均得到配合物中Ce(Ⅲ)与DMDODGA的化学计量数之比为1∶3。Ce(Ⅲ)和DMDODGA形成带正电的1∶3的络合物,该络合物再与NO-3相结合形成电中性的分子团。另外,红外光谱分析结果证实,Ce(Ⅲ)和DMDODGA中的C[CDS1]O基团存在强相互作用。反萃实验结果表明,由于DMDODGA与Ce(Ⅲ)结合得非常紧密,3种常用反萃剂并不能很好地从有机相中将Ce(Ⅲ)反萃入水相。  相似文献   

18.
本工作采用改进的方法合成Am3 与Ln3 的新型萃取剂2,6-二-(5,6-二正丙基-1,2,4-三嗪-3-取代)-吡啶(DPTP),并用MS、1HNMR、IR等对它进行了分析与鉴定。选定30%辛醇-正十二烷(ODOD)作稀释剂,研究了DPTP体系的平衡时间、萃取剂浓度、NO3-浓度、初始水相HNO3浓度、相比等因素对Am和Eu分配比的影响。实验结果表明:该萃取体系在5min内可达到萃取平衡;DAm随NO3-浓度增加而增大;随着水相酸度提高,DAm和DEu均显著增大,但二者间的分离因子SFAm/Eu恒定在100~120范围内;在0.5~2.0mol/L HNO3介质条件下,可有效分离Am(Ⅲ)和Eu(Ⅲ)。…  相似文献   

19.
以N,N,N′,N′-四辛基-2-甲基-3-氧戊二酰胺(Me-TODGA)或N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂、磷酸三丁酯(TBP)为相改良剂、煤油为稀释剂,对比研究了水相酸度、萃取剂浓度、锶浓度、温度对Me-TODGA-TBP体系和TODGA-TBP体系萃取Sr2+的影响,并采用斜率法确定了萃合物的组成。结果表明,2种酰胺荚醚萃取Sr2+的分配比(DSr)随HNO3浓度(c(HNO3)=0.1~2.7 mol/L)、萃取剂浓度(c(萃取剂)=0.05~0.3 mol/L)的增加而增大,随Sr2+浓度的升高略有下降,随温度的升高而下降。2种萃取剂的萃合物组成分别为Sr(NO3)2•3Me-TODGA和Sr(NO3)2•2TODGA。萃取反应的ΔH分别为-69.46 kJ/mol和-51.39 kJ/mol,ΔS分别为-190.5 J/(mol•K)和-128.4 J/(mol•K),ΔG分别为-12.68 kJ/mol和-13.12 kJ/mol。相比之下,Me-TODGA萃取Sr2+的分配比不到TODGA的1/5。  相似文献   

20.
为加深对四烷基-3-氧杂-戊二酰胺(TRDGA)类配体与三价锕/镧离子配位的认识,利用光谱及单晶X射线衍射分析技术,分别在含水辛醇溶液、水溶液、晶体及液-液萃取体系中对比研究了脂溶性N,N′-二甲基-N,N′-二辛基-3-氧杂-戊二酰胺(DMDODGA,L)以及水溶性四甲基-3-氧杂-戊二酰胺(TMDGA,L′)与Pr(Ⅲ)的配位。光谱滴定实验结果表明,两配体在溶液中均可与Pr(Ⅲ)形成金属离子与配体比值为1∶1、1∶2及1∶3的配合物,并获得了配合物稳定常数及标准吸收光谱。配合物中金属离子与配体比值相同时,L和L′与Pr(Ⅲ)形成的每对配合物中Pr(Ⅲ)特征吸收峰的位置及形状均几乎完全相同,说明每对配合物的内配位层结构相同或相近。PrL3′(ClO4)3晶体漫反射光谱与PrL33+及PrL3′3+标准吸收光谱的特征也相同,说明1∶3配合物均为三帽三棱柱配位构型。与加入硝酸根的光谱滴定实验相结合,通过有机相吸收光谱与已知固体/溶液配合...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号