首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
采用氨基羟基脲(HSC)的硝酸水溶液研究了从30%(体积分数,下同)TBP/煤油中还原反萃高浓度四价钚(Pu(Ⅳ))的性能,并与羟胺-肼(HAN-HN)、N,N-二甲基羟胺-单甲基肼(DMHAN-MMH)在钚净化浓缩循环中反萃行为进行了对比。结果表明:在一定HSC浓度下,适当延长相接触时间、减小相比(o/a)、降低酸度和提高温度,均有利于Pu(Ⅳ)的还原反萃。HSC作为还原反萃剂,可以有效实现30%TBP/煤油中高浓钚的反萃,反萃效果较其它几种还原剂更好,有望在先进二循环流程的钚净化浓缩工艺中得到应用。  相似文献   

2.
研究了氨基羟基脲(HSC)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了HSC浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加氨基羟基脲的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段10级,补充萃取段6级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U的收率大于99.99%,Pu的收率大于99.99%;铀中去钚的分离因数SFPu/U=2.8×104;钚中去铀的分离因数SFU/Pu=5.9×104。HSC作为还原反萃取剂,可有效实现铀钚分离。  相似文献   

3.
为了进一步优化Purex流程,研究了甲醛肟(FO)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了FO浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)的还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加甲醛肟的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段12级,补充萃取段4级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U和Pu 的回收率均大于99.99%;铀中去钚的分离因子SF(Pu/U)=1.0×104;钚中去铀的分离因子SF(U/Pu)=8.3×104。FO作为新型络合 还原反萃取剂,可有效实现铀钚分离。  相似文献   

4.
N,N-二甲基羟胺对Pu(Ⅳ)的还原反萃和相应的计算机模型   总被引:2,自引:1,他引:1  
研究了N,N-二甲基羟胺(DMHAN)的HNO3溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃行为,考察了N,N-二甲基羟胺浓度、HNO3浓度、温度以及两相接触时间对Pu(Ⅳ)反萃率的影响.结果表明:延长相接触时间能显著提高钚的反萃率;增加HNO3浓度、加大DMHAN的用量、升高温度均能加快钚的反萃速率,但当相接触时间超出一定范围时,这些因素都不能显著增加钚的反萃率.编写了DMHAN单级反萃Pu(Ⅳ)的计算机模拟程序,程序计算值与实验值在一定范围内符合良好.  相似文献   

5.
采用可控温的单级萃取装置,对羟胺还原反萃取钚的工艺条件进行了优化。实验表明,硝酸肼能够将少量Pu(Ⅳ)还原反萃取到水相,但是当硝酸肼浓度较高时,硝酸肼则表现出盐析效应,抑制钚的还原反萃取;对于钚还原反萃取工艺来说,当保持进料中羟胺与钚的摩尔数之比为定值时(在50℃时n (HAN)/ n (Pu)=2~3较为适宜),增大还原剂流量能够提高钚的收率,但同时会降低钚的浓缩倍数;温度升高时,硝酸氧化Pu(Ⅲ)的反应速率加快,使得钚在有机相中的浓度有所升高;当溶液中离子强度较高时,在盐析效应的作用下,Pu(Ⅲ)的分配比随离子强度的提高而升高,导致钚在有机相中的浓度上升。  相似文献   

6.
N,N—二甲基羟胺对Pu(Ⅳ)的还原反萃和相应计算机模型   总被引:2,自引:0,他引:2  
研究了N,N-二甲基羟胺(DMHAN)的HNO3溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃行为,考察了N,N-二甲基羟胺浓度、HNO3浓度、温度以及两相接触时间对Pu(Ⅳ)反萃率的影响。结果表明:延长相接触时间能显著提高钚的反萃率;增加HNO3浓度、加大DMHAN的用量、升高温度均能加快钚的反萃速率,但当相接触时间超出一定范围时,这些因素都不能显著增加钚的反萃率。编写了DMHAN单级反萃Pu(Ⅳ)的计算机模拟程序,程序计算值与实验值在一定范围内符合良好。  相似文献   

7.
采用紫外可见光谱和气质联用(GC-MS)法研究了二甲基羟胺-甲基肼(DMHAN-MMH)溶液中MMH次级反应中甲醛甲腙的产生过程和性能,并研究了甲醛甲腙对30%TBP-正十二烷中Pu(Ⅳ)的反萃影响。研究表明:久置的DMHAN-MMH硝酸溶液变黄的主要原因是部分甲基肼被空气中的氧气氧化生成甲醛,生成的甲醛再与MMH缩合生成了甲醛甲腙;低温、密闭和避光可以减少DMHAN-MMH硝酸溶液中甲醛甲腙的生成。室温下,低含量(10~(-3) mol/L)的甲醛甲腙对于30%TBP-正十二烷中常量Pu(Ⅳ)的反萃率无明显影响,但对低浓度Pu(Ⅳ)(0.5g/L)的反萃率具有影响,且钚浓度越低其影响越显著。  相似文献   

8.
为了解双羟基脲(DHU)在Purex流程Pu纯化循环应用的可行性,通过单级反萃实验研究了两相接触时间、有机相钚浓度、水相酸度及DHU浓度、相比等因素对Pu(Ⅳ)单级反萃率的影响。实验结果表明,在15℃下、接触时间≥1min、水相酸度≤0.4mol/L、还原剂浓度≥0.4mol/L、相比≤4:1时,对含12g/LPu0.2mol/L硝酸的有机相进行还原反萃,其反萃率≥87%。同时,反萃率随有机相中Pu(Ⅳ)或水相中Pu(III)浓度的提高而降低。  相似文献   

9.
为开发Pu(Ⅳ)的高选择性萃取剂,实现废液中微量钚的回收,以正十二烷作为稀释剂,研究2,2′-((4-乙氧基-1,2-亚苯基)双(氧基))双(N,N-双(2-乙基己基)乙酰胺)(4-EthoxyBenzoDODA)对U(Ⅵ)、Pu(Ⅳ)的萃取行为,以及两相混合振荡时间、水相硝酸浓度和有机相萃取剂浓度对U(Ⅵ)、Pu(Ⅳ)萃取分配比的影响。硝酸的萃取实验结果表明,4-EthoxyBenzoDODA(KH=0.14)比BenzoDODA(KH=0.44)碱性弱,更有利于选择萃取离子势较强的Pu(Ⅳ)。对U(Ⅵ)、Pu(Ⅳ)的萃取实验表明,Pu(Ⅳ)对U(Ⅵ)的分离因子最高可达6.9,Pu(Ⅳ)对Eu(Ⅲ)的分离因子最高可达223。采用斜率法分析了4.0 mol/L HNO3浓度下U(Ⅵ)萃合物的组成,主要为UO2(NO3)2·L)、Pu(Ⅳ)(Pu(NO3)4·L和Pu(NO3)4·L2共存。使用硝酸肼或者硝酸羟胺等还原反萃剂,可以将负载有机相中98%的Pu反萃至水相中。结果表明,4-EthoxyBenzoDODA对Pu(Ⅳ)具有一定的选择性。  相似文献   

10.
镎的提取和分离是后处理领域重点关注的研究课题之一。甲基肼作为一种有机无盐试剂,其还原Np(Ⅵ)的速率快于还原Pu(Ⅳ)的速率,理论上可以利用其反应速率上的差异来实现镎与钚的分离。为了探索甲基肼还原反萃分离镎、钚的可行性,本文采用单级萃取池研究了甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)的过程。通过考察还原剂浓度、硝酸浓度以及反应温度和搅拌速率等条件对甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)过程的影响,确定了Np(Ⅵ)和Pu(Ⅳ)反萃动力学方程和表观活化能。通过所得的动力学方程得出甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)的半反应时间,并对Np(Ⅵ)和Pu(Ⅳ)分离过程的工艺进行了初步探索。  相似文献   

11.
研究了磷酸三丁酯(TBP)辐解产物磷酸二丁酯(HDBP)和磷酸一丁酯(H2MBP)对U(Ⅳ)-肼以及乙异羟肟酸(AHA)反萃Pu(Ⅳ)的影响,考察了相接触时间、相比(o∶a)、还原剂浓度、HNO3浓度、肼浓度、TBP辐解产物HDBP和H2MBP浓度等条件对含有HDBP或H2MBP的30%(体积分数)TBP/煤油中Pu(Ⅳ)反萃率的影响。结果表明:U(Ⅳ)对Pu(Ⅳ)有很强的还原反萃能力,降低相比、HNO3浓度、肼浓度有利于U(Ⅳ)对Pu(Ⅳ)的反萃,并且U(Ⅳ)可以快速有效地破坏HDBP、H2MBP与Pu(Ⅳ)的络合,将Pu(Ⅳ)反萃到水相。乙异羟肟酸对Pu(Ⅳ)有很强的络合反萃能力,通过降低酸度、延长相接触时间和增大AHA浓度能够有效降低HDBP和H2MBP对AHA络合反萃Pu(Ⅳ)的影响。  相似文献   

12.
研究在模拟高放废液中加入乙羟肟酸(AHA)以消除酰胺荚醚(TBOPDA)萃取模拟高放废液过程中的界面污物。萃取实验结果表明:在模拟高放废液中加入AHA可显著降低Zr(Ⅳ)在两相中的分配比,此时,Pu(Ⅳ)的分配比仍足够大,它不影响TBOPDA对Pu(Ⅳ)的回收。反萃实验表明:在所研究的反萃条件下,1级反萃即可有效反萃TBOPDA有机相中的Zr(Ⅳ);3次错流反萃可有效反萃TBOPDA有机相中的Pu(Ⅳ);反萃液中加入AHA对Am(Ⅲ)的累计反萃率影响很小;提高反萃液的酸度可抑制TBOPDA有机相中Am(Ⅲ)的反萃。  相似文献   

13.
建立了痕量Pu(Ⅳ)、Pu(Ⅴ)、Pu(Ⅵ)溶液的制备方法,并跟踪了各价态钚溶液的稳定性。采用TTA选择性萃取Pu(Ⅳ)、HDEHP萃取Pu(Ⅳ+Ⅵ)的方法分析了溶液中钚价态的分布。结果表明,将浓度为10-11 mol/L量级的钚溶液在1mol/L HNO3体系中反复蒸干可制得Pu(Ⅳ)溶液;Pu(Ⅳ)在0.5~1mol/L HNO3-0.1mmol/L KMnO4溶液体系中反应24h,可获得Pu(Ⅵ)溶液;Pu(Ⅵ)避光保存5d后,可得到Pu(Ⅴ)溶液,各单一价态钚溶液的纯度均大于90%。在pH=3.0、0.01mol/L NaCl体系中,各价态均不能稳定存在,因此,所需单一价态钚溶液应新鲜制备。  相似文献   

14.
H_2O_2调价UTEVA树脂对钚的分离方法   总被引:1,自引:0,他引:1  
研究了H2O2调节钚价态至Pu(Ⅳ)的条件,对于钚质量浓度在10-3 g/L量级的溶液,适量H2O2可以将钚价态稳定在Pu(Ⅳ)。采用粒径为50~100μm的UTEVA树脂填充的柱体积为2mL的萃取色层柱,在6mol/L HNO3浓度下,使用w=1.5%H2O2作为氧化还原剂对10-2 g/L的钚进行预处理,能将钚吸附上柱。通过适当条件的洗脱,在铀、镎、钚混合溶液中,得到钚的回收率约为108%。  相似文献   

15.
2,6-吡啶二羧酸(DPA,以H2C表示)是一种可用于乏燃料后处理Purex流程高保留钚废有机相中钚洗脱的洗脱剂。为将DPA洗脱液中的钚与铀分离并回收钚,本文通过静态吸附实验研究了DPA-Pu(Ⅳ)/U(Ⅵ)配合物在强碱性阴离子交换树脂DOWEX 1上的吸附性能,考察了DPA浓度、酸度、温度以及主要辐解产物对DOWEX 1吸附钚和铀的影响。培养了DPA与U(Ⅳ)/U(Ⅵ)配合物的单晶并测定了其结构,通过配合物晶体与吸附金属离子树脂光谱的对比确定了Pu(Ⅳ)(以U(Ⅳ)模拟代替)和U(Ⅵ)吸附在树脂上的配合物形态,通过变温吸附实验获得了相应吸附反应的热力学数据。吸附实验结果表明,DOWEX 1树脂能在低酸(0.1 mol/L HNO3)条件下同时吸附钚和铀,在高酸(8 mol/L HNO3)条件下只吸附钚不吸附铀。根据上述实验所得结果,提出低酸吸附铀/钚、高酸柱上转型除铀、低酸解吸回收钚的方案,并进行了实验验证。结果表明,采用所提出的回收钚的方案,钚的回收率达96%,对铀的去污因子约为2.8×103。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号