首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
本文研究了用TBP反相分配色层法分离、测定Np(Ⅳ、Ⅴ、Ⅵ)的条件,并对纯Np硝酸体系或U-Np硝酸体系进行Np(Ⅳ、Ⅴ、Ⅵ)的测定。此法简单快速。用反相分配色层—阴离子交换法分离、测定了低浓铀高燃耗料液中Np的各种价态的比例。本文对Np(Ⅵ)在色层柱上的还原问题进行了研究,掌握了某些规律,并寻得了解决的方法。  相似文献   

2.
用阴离子交换法研究了TRPO流程中镎和钚的浓缩和分离。在适宜条件下,Np、Pu以草酸络阴离子被阴离子交换树脂吸附。用稀硝酸将镎、钚同时洗脱后,调节洗脱液为8mol/LHNO3,使镎和钚转成硝酸络阴离子,再用一阴离子交换柱吸附镎和钚后,用氨基磺酸亚铁-硝酸溶液还原解吸钚,最后用稀硝酸洗脱镎。在实验基础上,建立了镎、钚的离子交换分离流程。本流程的镎、钚浓缩倍数为840,它们的浓度达到约20g/L,镎和钚的分离系数βPu/Np>100;βNp/Pu>300;Np和Pu的回收率分别为97.6%和97.4%。  相似文献   

3.
在Purex流程中,镎可以Np^4+、NpO2^+、NpO2^2+价态同时存在,但Np(Ⅳ)和Np(Ⅵ)能被TBP萃取,而Np(Ⅴ)则在TBP中的分配比很低。不能被TBP萃取,因此,控制镎的价态是分离提取镎的重要环节。可利用镎不同价态之间电位的差异,采用电化学方法控制镎的价态。  相似文献   

4.
在后处理流程的众多化学分离中 ,Np的走向和控制是国际后处理界关注的重点研究课题。根据我国和其他国家的研究成果 ,综合分析了后处理中Np的走向和控制。Np在辐照燃料溶解液中的价态分布主要取决于溶解液中HNO3与HNO2 之比 ,通常情况下 ,溶解液中Np(Ⅴ )占主要份额 ;Np在共去污阶段的走向有两种可能 ,一是将Np控制为Np(Ⅴ ) ,使其进入高放废液 (1AW ) ,二是将Np控制为Np(Ⅵ ) ,则Np将与U ,Pu一起进入有机相 ,但两者至今为止都难以实现定量分离。Np在U/Pu分离阶段部分随U ,部分随Pu。在U纯化循环中 ,理想的方法是采用低酸加热氧化Np(Ⅳ )至Np(Ⅴ ) ,以实现与铀的有效分离。  相似文献   

5.
研究了痕量Np和Pu的同步分离测量方法.利用相同价态Np和Pu的化学行为和物理性质的相似性,以242Pu为指示剂,用TOA萃取色层-Dowex阴离子交换双柱联合同步分离纯化,ICP-MS同时定量237 Np和239Pu,实现237Np和239Pu的同步分离测量.实验结果表明,相同价态的Np和Pu在色层柱中的化学行为相似...  相似文献   

6.
乏燃料后处理湿法工艺技术基础研究发展现状   总被引:3,自引:3,他引:0  
为了保持核能可持续发展,必须相应发展乏燃料后处理技术,以实施快堆闭合核燃料循环。湿法后处理工艺仍以PUREX流程为基础,从乏燃料元件首端处理工艺、萃取工艺的简化和无盐调价等方面开展相应的研究。同时随着动力堆乏燃料元件燃耗的增加,Np、Pu以及高产额裂变产物元素Ru、Tc、Zr等在水法后处理工艺中的行为及形态等影响日趋凸显。本文针对上述问题进行了论述,并提出了相应的研究重点。  相似文献   

7.
镎的主要价态为四、五、六价,三种价态的镎可共存,且可在一定条件下互相转化。不同价态镎的萃取行为不尽相同。随铀钚一同进入1B槽中的镎主要为具有一定萃取能力的Np(Ⅳ)和萃取能力较高的Np(Ⅵ)。在1B槽还原性气氛下,Np(Ⅵ)将被反萃液中的还原剂还原为Np(Ⅴ)甚至Np(Ⅳ),而Np(Ⅴ)的萃取能力很弱,基本上不被萃取,所以,Np(Ⅳ)的萃取行为便成了1B槽铀镎分离的关键。基于以上分析,在1B槽铀镎分离串级实验中,初始镎以Np(Ⅳ)形式加入。  相似文献   

8.
镎的提取和分离是国际后处理领域重点关注的研究课题之一。在Purex流程中,硝酸肼常被用来作为亚硝酸的清扫剂,此外,由于硝酸肼对Np(VI)和Pu(IV)的氧化还原反应具有选择性,理论上可以利用其反应速率上的差异来实现镎与铀钚的分离。为探索硝酸肼分离镎/钚工艺提供可行性,本文采用单级萃取设备研究了硝酸肼还原反萃Np和Pu的过程。通过研究硝酸浓度、硝酸肼浓度和反应温度对还原反萃过程的影响,确定了Np(VI)和Pu(IV)反萃动力学方程和表现活化能。进一步通过动力学方程得出硝酸肼还原反萃Np(VI)和Pu(IV)的半反应时间,并对Np(VI)/Pu(IV)分离过程的工艺进行了初步探索。  相似文献   

9.
在制备并稳定Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的基础上,研究了它们在稀TBP/煤油与水相间的分配。考察了25℃下5%TBP/煤油萃取时硝酸浓度、硝酸铝浓度、六价铀浓度对3种价态镎萃取分配的影响,并考察了TBP浓度对它们的萃取影响。25℃下,Np(Ⅳ,Ⅴ,Ⅵ)的萃取反应方程及表观平衡常数分别为Np  相似文献   

10.
镎的主要价态为四、五、六价,三种价态的镎可共存,且可在一定条件下互相转化。不同价态镎的萃取行为不尽相同。随铀钚一同进入1B槽中的镎主要为具有一定萃取能力的Np(Ⅳ)和萃取能力较高的Np(Ⅵ)。在1B槽还原性气氛下,Np(Ⅵ)将被反萃液中的还原剂还原为Np(Ⅴ)甚至Np(Ⅳ),而Np(Ⅴ  相似文献   

11.
In this study, we have accomplished for the first time the photochemical valence adjustment of Pu and Np for the separation and coextraction of these elements in a nitric acid solution using UV light irradiation. Also, the separation and coextraction of Pu and Np were substantiated in principle by the solvent extraction using 30% TBP/n-dodecone after or during the photochemical valence adjustment. By only one photochemical separation operation, about 86% of Pu and about 99% of Np were distributed into the organic phase and the aqueous phase, respectively, and then by only one photochemical coextraction operation, about 86% of Pu was distributed together with about 99% of Np into the same organic phase. Based on these experimental data, we determined that the photochemical oxidation reaction was due to the photoexcted nitric acid species, ′NO3.

To confirm the strong oxidative ability of this species, the photochemical dissolution tests of UO2 powder in a nitric acid solution by UV light irradiation were carried out. The irradiation rate and the concentration of nitric acid solution significantly effects the photochemical dissolution reaction, we have also accomplished for the first time the photochemical dissolution of UO2 at room temperature.  相似文献   


12.
The aim of the present study is to establish a new reprocessing system for spent nuclear fuel, which would overcome the environmental problems in the nuclear fuel cycle. In order to achieve this, the following subjects have to be conquered: recoveries of high ratios of uranium and trans uranium elements from spent nuclear fuel, separations of strong radioactive elements, such as Sr and Cs, and assurance of the extreme safety during operation. The last subjects might be of particular importance in order to avoid any potential danger. Therefore, in the present system all processes were performed under mild aqueous conditions. Experiments were carried out for a simulated spent fuel solution, which was calculated from the ORIGEN CODE containing uranium and 17 major elements. The system consists of the following processes: 1. dissolution of spent UO2 fuel involving off-gas treatment of I and Ru; 2. neutralization of the dissolved fuel solution with NaHCO3---Na2CO3 mixed solution to be slightly basic at pH about 9 followed by the separation of precipitated fission products by centrifugation; 3. separation of Cs by a precipitation method using tetraphenylborate ion; 4. recovery of U, Np and Pu as precipitates of hydrolyzed compounds from alkaline solution; 5. separation of Am and Cm from lanthanide elements. The concentration of residual uranium in the final solution was measured to be ppm order, indicating that the decontamination factor of U was as large as 104. Other hexa-valent actinide ions, NpO22+ and PuO22+, also have extremely large stability constants for the complex formation with carbonate ion, and are expected to behave similarly with UO22+. In conclusion, the present reprocessing system enables us to recover U, Pu and Np from spent nuclear fuel by means of a simple precipitation method in much higher ratios compared with other reprocessing methods, to separate hazardous Cs and Sr from high-level waste, and to exclude any potential danger owing to chemical processes under mild aqueous conditions.  相似文献   

13.
UO2-Zr弥散燃料板的氧化过程包括包壳与冷却剂的氧化反应和芯体中弥散的UO2燃料微球氧原子扩散过程。本文通过直接求解球坐标系下的氧化扩散方程,得到UO2燃料微球高温下向芯体中氧原子扩散强度的解析式,该式与实验数据符合良好,并结合锆水反应与UO2燃料微球高温氧原子扩散效应构建了UO2-Zr板的氧化扩散模型。新模型能预测不同的氧化结构、芯体中更高的氧原子浓度以及相对较低的氧化吸氧量,为UO2-Zr板严重事故早期行为的研究提供了理论基础。  相似文献   

14.
离子液体具有独特的物理化学性质,可以参与或影响两亲分子自组装。离子液体介质中的自组装研究所涉及的两亲分子多为有机化合物,而金属配合物在离子液体中的组装鲜有报道。另外,萃取剂正辛基苯基-N,N-二异丁基胺基甲酰基甲基氧化膦(CMPO)在1-乙基-3-甲基咪唑双三氟甲基磺酰亚胺盐(C2mimNTf2)中萃取UO2+2时形成的萃合物结构组成有待深入研究。本工作探究了UO2(CMPO)3(NO3)2在C2mimNTf2中的组装行为。原位透射电镜(原位TEM)研究表明:UO2(CMPO)3(NO3)2在C2mimNTf2(含70μL水)中形成聚集体,冷冻刻蚀电镜(FF-TEM)显示该聚集体是胶束。此外,研究了CMPO-C2mimNTf2体系萃取UO2+2时形成的萃合物组成。离子色谱结果表明:萃取前后水相中NO-3浓度变化不大,电喷雾质谱(ESI-MS)上均为UO2(CMPO)3(NTf2)2的碎片离子峰,这些结果说明:CMPO-C2mimNTf2体系萃取UO2+2时形成的萃合物组成为UO2(CMPO)3(NTf2)2而非UO2(CMPO)3(NO3)2。这有助于深入了解金属配合物在离子液体中的组装行为,并对理解CMPO-C2mimNTf2体系萃取UO2+2的机理提供了重要参考。  相似文献   

15.
研究了H2O2同时调节镎、钚、铀价态至Np(Ⅳ)、Pu(Ⅳ)以及U(Ⅵ)的条件,在6mol/L HNO3浓度下,使用1.5%H2O2作为氧化还原剂对1AW进行调价,吸附上UTEVA柱并淋洗后,对钚、镎和铀进行洗脱。对模拟放射性样品进行预处理后,其中铀、镎、钚单独顺序洗脱的回收率分别为91.5%、119%、99.8%,137 Cs的去污因子高达7.4×104,单个样品操作时间约为1~1.5h;若钚洗脱后铀、镎同时洗脱并使用ED-XRF测量可以减少操作时间,铀、镎的回收率分别为102.4%、93.9%。均满足样品分析及辐射防护要求。  相似文献   

16.
研究了以煤油为稀释剂、甲基膦酸二(1-甲庚)酯(DMHMP)对硝酸介质中Np(Ⅳ)的萃取性能,考察相接触时间、萃取剂浓度、硝酸根浓度、HNO_(3)浓度和温度对Np(Ⅳ)萃取分配比的影响。萃取过程主要以中性分子形式对Np(Ⅳ)进行萃取,利用斜率分析方法对萃取机理进行了探究,表明萃合物的组成为Np(NO_(3))_(4)·2DMHMP。该反应的焓变为负值,表明萃取反应为放热反应。  相似文献   

17.
为提高UO3活性、降低铀转化生产成本,以硝酸铀酰溶液为原料、丙烷燃烧产生的高温气体为热源,采用高压喷雾技术制备了高活性UO3粉末。探讨了硝酸铀酰溶液中的铀浓度和反应温度对UO3活性的影响,并分析了高压喷嘴结构对UO3粉末粒度分布的影响。实验结果表明,在反应温度400 ℃、反应压力-100 Pa等控制条件下,采用雾化干燥技术制备的UO3比表面积可达18 m2/g,粉末粒径在15~50 μm之间,说明制备的UO3活性较好。其原因是高温高速气流与雾化液滴横向接触时,不仅发生了高速气体对液滴的撕裂作用,也存在高温条件下水气化导致液滴破裂的过程。同时也显示该工艺具有潜在的工业应用价值。  相似文献   

18.
介绍了清华大学核能与新能源技术研究院制备高温气冷堆燃料元件UO2核芯的溶胶凝胶工艺各种废料的产生情况。针对各种废料的特性,分别进行处理,实现回收再利用。对工艺中产生的含U废液先进行沉淀处理,经1次煅烧后溶解性差,必须将沉淀进行煅烧 还原 煅烧工序后才能实现再利用。对最终烧结球中的不合格品直接进行煅烧处理,将UO2转化为U3O8,即可再利用。各种废料回收后均可作为原料生产UO2核芯,综合回收率为99.98%。  相似文献   

19.
为研究铀矿区地下水化学性质对铀的存在形式的影响,本文以赣杭构造带某铀矿区地下水为研究对象,在对9个典型采样点地下水化学成分分析的基础上,采用数理统计软件SPSS 18.0和地球化学模拟软件PHREEQC及llnl.dat数据库,探究了研究区内地下水水化学特征及U的存在形式。结果表明:本研究区地下水水化学类型以HCO_(3)-Na与HCO_(3)-Na·Ca为主,U含量与Ca^(2+)和Mg^(2+)浓度体现出较强正相关性,与SO_(4)^(2-)的相关性次之;地下水中U元素主要以六价为主,几乎占100%,主要存在形式依次为UO_(2)(CO_(3))_(2)^(2-)、UO_(2)(CO_(3))_(3)^(4-)、UO_(2)CO_(3)、UO_(2)(OH)2、UO_(2)(OH)_(3)^(-)、UO_(2)OH^(+)等6种,其中UO_(2)(CO_(3))_(2)^(2-)占绝对优势,整体以碳酸铀酰形式为主,这也与研究区地下水酸碱性相对应。  相似文献   

20.
提高燃料燃耗的一个有效手段是通过增大UO2晶粒尺寸来减少元件内部气体压力,在大晶粒UO2芯块中,裂变气体到达晶界表面的距离增加,因而裂变气体的释放速率降低,元件内部气体压力的增高缓慢。本文研究了添加Cr2O3对UO2晶粒尺寸的影响。对纯UO2、添加0.5% Cr2O3及5% Cr2O3 3种配方的芯块进行了试验,在5%H2Ar保护下,以10 ℃/min和5 ℃/min的升温速率升温至1 700 ℃,然后烧结2 h或4 h,对比纯UO2芯块与添加Cr2O3的芯块发现,添加Cr2O3可有效增大晶粒尺寸;较长的烧结时间可促进晶粒长大;较低的升温速率也使晶粒长大。烧结过程产生液相烧结,液相浸润晶粒边界,促进晶粒长大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号