首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NaLa(WO4)2:Eu3+ phosphors with different Eu3+ concentrations have been synthesized by a hydrothermal method. The phase is confirmed by XRD analysis, which shows a pure-phase NaLa(WO4)2 XRD pattern for all of NaLa(WO4)2:Eu3+ phosphors. The SEM and TEM images indicate that all of NaLa(WO4)2:Eu3+ phosphors have a octahedral morphology. These suggest that the Eu3+ doping has no influence on the structure and growth of NaLa(WO4)4 particles. By monitoring the emission of Eu3+ at 615 nm, NaLa(WO4)2:Eu3+ phosphors show excitation bands originating from both host and Eu3+ ions. Under the excitation at 271 nm corresponding to WO4 2? groups, emission bands coming from the 1A1 → 3T1 transition with the WO4 2? groups and the 5D0 → 7Fj (j = 0, 1, 2, 3 and 4) transitions of Eu3+ are observed. The emission intensity relating to WO4 2? groups decreases with increasing Eu3+ concentration. But emission intensities of Eu3+ increase firstly and then decreases because of concentration quenching effect. Under the excitation at 395 nm corresponding to 7F0 → 5L6 transition of Eu3+, only characteristic Eu3+ emission bands can be observed. The results of this work suggest that tunable luminescence can be obtained for Eu3+ doped NaLa(WO4)2 phosphors by changing Eu3+ concentration and excitation wavelength.  相似文献   

2.
Phase pure Ce3+ and Tb3+ singly doped and Ce3+/Tb3+ co-doped Ba3GdNa(PO4)3F samples have been synthesized via the high temperature solid-state reaction. The crystal structures, photoluminescence properties, fluorescence lifetimes, thermal properties and energy transfer of Ba3GdNa(PO4)3F:Ce3+,Tb3+ were systematically investigated. Rietveld structure refinement indicates that Ba3GdNa(PO4)3F crystallizes in a hexagonal crystal system with the space group P-6. For the co-doped Ba3GdNa(PO4)3F:Ce3+,Tb3+ samples, the emission color can be tuned from blue to green by varying the doping concentration of the Tb3+ ions. The intense green emission was realized in the Ba3GdNa(PO4)3F:Ce3+,Tb3+ phosphors on the basis of the highly efficient energy transfer from Ce3+ to Tb3+. Also the energy transfer mechanism has been confirmed to be quadrupole–quadrupole interaction, which can be validated via the agreement of critical distances obtained from the concentration quenching (13.84 Å). These results show that the developed phosphors may possess potential applications in near-ultraviolet pumped white light-emitting diodes.  相似文献   

3.
This paper reports the comparison of photoluminescence and afterglow behavior of Dy3+ in CaSnO3 and Ca2SnO4 phosphors. The samples containing CaSnO3 and Ca2SnO4 were prepared via solid-state reaction. The properties have been characterized and analyzed by utilizing X-ray diffraction (XRD), photoluminescence spectroscope (PLS), X-ray photoelectron spectroscopy (XPS), afterglow spectroscopy (AS) and thermal luminescence spectroscope (TLS). The emission spectra revealed that CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors showed different photoluminescence. The Ca2SnO4:Dy3+ phosphor showed a typical 4F9/2 to 6Hj energy transition of Dy3+ ions, with three significant emissions centering around 482, 572 and 670 nm. However, the CaSnO3:Dy3+ phosphor revealed a broad T1 → S0 transitions of Sn2+ ions. The XPS demonstrate the existence of Sn2+ ions in CaSnO3 phosphor caused by the doping of Dy3+ ions. Both the CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors showed a typical triple-exponential afterglow when the UV source switched off. Thermal simulated luminescence study indicated that the persistent afterglow of CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors was generated by the suitable electron or hole traps which were resulted from the doping the calcium stannate host with rare-earth ions (Dy3+).  相似文献   

4.
The novel Ca4?x(PO4)2O: xDy3+ and Ca4?x?y(PO4)2O: xDy3+, yEu2+ multi-color phosphors were synthesized by traditional solid-state reaction. The crystal structure, particle morphology, photoluminescence properties and energy transfer process were investigated in detail. The X-ray diffraction (XRD) results demonstrate that the products showed pure monoclinic phase of Ca4(PO4)2O when x < 0.1. The scanning electron microscopy (SEM) indicated that the phosphors were grain-like morphologies with diameters of ~ 3.7–7.0 μm. Under excitation of 345 nm, Dy3+-doped Ca4(PO4)2O phosphors showed multi-color emission bands at 410, 481 and 580 nm originated from oxygen vacancies and Dy3+. Interestingly, Ca4(PO4)2O: Dy3+, Eu2+ phosphors exhibited blue emission band at 481 nm and broad emission band from 530 to 670 nm covering green to red regions. The energy transfer process from Dy3+ to Eu2+ was observed for the co-doped samples, and the energy transfer efficiency reached to 60% when Eu2+ molar concentration was 8%. In particular, warm/cool/day white light with adjustable CCT (2800–6700 K) and high CRI (Ra > 85) can be obtained by changing the Eu2+ co-doping contents in Ca4(PO4)2O: Dy3+, Eu2+ phosphors. The optimized Ca3.952(PO4)2O: 0.04Dy3+, 0.008Eu2+ phosphor can achieve the typical white light with CCT of 4735 K and CRI of 87.  相似文献   

5.
The polycrystalline Eu2+ and RE3+ co-doped strontium aluminates SrAl2O4:Eu2+, RE3+ were prepared by solid state reactions. The UV-excited photoluminescence, persistent luminescence and thermo-luminescence of the SrAl2O4:Eu2+, RE3+ phosphors with different composition and doping ions were studied and compared. The results showed that the doped Eu2+ ion in SrAl2O4:Eu2+, Dy3+ phosphors works as not only the UV-excited luminescent center but also the persistent luminescent center. The doped Dy3+ ion can hardly yield any luminescence under UV-excitation, but can form a electron trap with appropriate depth and greatly enhance the persistent luminescence and thermo-luminescence of SrAl2O4:Eu2+. Different co-doping RE3+ ions showed different effects on persistent luminescence. Only the RE3+ ion (e.g. Dy3+, Nd3+), which has a suitable optical electro-negativity, can form the appropriate electron trap and greatly improve the persistent luminescence of SrAl2O4:Eu2+. Based on above observations, a persistent luminescence mechanism, electron transfer model, was proposed and illustrated.  相似文献   

6.
A series of single-phase Sr3YNa(PO4)3F:Dy3+ phosphors were successfully synthesized via a conventional solid state reaction process. The powder X-ray diffraction patterns were utilized to confirm the phase composite and crystal structure. The phosphor could be excited by the ultraviolet visible light in the region from 300 to 420 nm, and it shown two dominant emission bands peaking at 484 nm (blue light) and 580 nm (yellow light) which originated from the transitions of 4F9/26H15/2 and 4F9/26H13/2 of Dy3+, respectively. The optimum dopant concentration of Dy3+ ions was confirmed to be 7 mol% in Sr3YNa(PO4)3F:Dy3+ system and the concentration quenching mechanism is dipole–dipole interaction. The lifetime values of Dy3+ ions at different concentrations (x?=?0.03, 0.05, 0.07, 0.09 and 0.11) were determined to be about 0.855, 0.759, 0.686, 0.606 and 0.546 ms, respectively. The thermal stability of luminescence of Sr3YNa(PO4)3F:0.07Dy3+ phosphor was also investigated and the activated energy was deduced to be 0.228 eV, which shows good thermal stability. The chromaticity coordinates fall in the white-light region calculated by the emission spectrum. These results show that Sr3YNa(PO4)3F:Dy3+ phosphor can be a promising white emitting phosphor for white LEDs.  相似文献   

7.
A series of Sr3Gd1?xLi(PO4)3F: xSm3+ (x?=?0.02, 0.04, 0.06, 0.08) phosphors were synthesized by a high-temperature solid state method. The Sm3+ activated Sr3GdLi(PO4)3F phosphors can be efficiently excited by the wavelengths in the range from 350 to 450 nm, which matches perfectly with that of the commercial near-UV LED chips. The optimal doping concentration of Sr3Gd1?xLi(PO4)3F: xSm3+ phosphors was determined to be x?=?0.04, corresponding to the quantum efficiency of 2.23%, and the CIE chromaticity coordinates (x?=?0.5172, y?=?0.4641). The concentration quenching mechanism of Sm3+ in Sr3GdLi(PO4)3F host is mainly attributed to the dipole–dipole interaction, which was confirmed by the fluorescent lifetimes. The effect of temperature on the photoluminescence property of Sr3GdLi(PO4)3F: Sm3+ was investigated. 90% of the intensity is preserved at 150 °C. In addition, a white light emitting diode (WLED) lamp was fabricated by a 405 nm n-UV LED chip coated with Sr3Gd0.96Li(PO4)3F:0.04Sm3+ phosphor and commercial yellow phosphor (YAG: Ce3+) of a certain mass ratio. The present work indicates that the Sr3GdLi(PO4)3F: Sm3+ orange–red-emitting phosphors tend to be potential application in n-UV WLED.  相似文献   

8.
A series of SrLaMgTaO6:Sm3+ phosphors were synthesized through a solid state reaction. The phase, microstructure and luminescent properties of the synthesized phosphors were investigated through techniques of XRD, SEM and spectrophotometer. The XRD patterns show that the synthesized phosphors have the same phase structure. The SEM images show that the synthesized phosphors are microcrystallines in the range of 1.2–3.4 µm. SrLaMgTaO6:Sm3+ phosphors present emission bands originating from TaO6 group and Sm3+ ions. The critical concentration of Sm3+ in SrLaMgTaO6 is found to be 7 mol%. Due to energy transfer from TaO6 group to Sm3+, tunable luminescence is obtained by changing Sm3+ doping concentration.  相似文献   

9.
A series of Pr3+, Gd3+ and Pr3+–Gd3+-doped inorganic borate phosphors LiSr4(BO3)3 were successfully synthesized by a modified solid-state diffusion method. The crystal structures and the phase purities of samples were characterized by powder X-ray diffraction. Surface morphology of the sample was studied by scanning electronic microscopy (SEM). The optimal concentrations of dopant Gd3+ ions in compound LiSr4(BO3)3 were determined through the measurements of photoluminescence (PL) spectra of phosphors. Gd3+-doped phosphors LiSr4(BO3)3 show strong band absorption in UV spectral region and narrow-band UVB emission under the excitation of 276 nm was only due to 6P J 8S7/2 transition of Gd3+ ions. The effect of Pr3+ ion on excitation of LiSr4(BO3)3:Gd3+ was also studied. The excitation of LiSr4(BO3)3:Gd3+, Pr3+ gives a broad-band spectra, which show very good overlap with the Hg 253.7 nm line. The photoluminescence spectra of LiSr4(BO3)3 with different doping concentrations Pr3+ and keeping the concentration of Gd3+ constant at 0.03 mol have also been studied. The emission intensity of LiSr4(BO3)3:Pr3+–Gd3+ phosphors increases with increasing Pr3+ doping concentration and reaches a maximum at 0.01 mol. From the photoluminescence study of LiSr4(BO3)3:Gd3+, Pr3+ we conclude that there was efficient energy transfer from Pr3+→ Gd3+ ions in LiSr4?x?y Pr x Gd y (BO3)3 phosphors.  相似文献   

10.
Sm3+-activated NaSrPO4 phosphors could be efficiently excited at 403 nm, and exhibited a bright red emission mainly including four wavelength peaks of 565, 600, 646 and 710 nm. The highest emission intensity was found for NaSr 1?x PO4: xSm3+ with a composition of x = 0.007. Concentration quenching was observed as the composition of x exceeds 0.007. The decay time values of NaSr1?x PO 4 : xSm3+ phosphors range from around 2.55 to 3.49 ms. NaSr1?x PO4: xSm3+ phosphor shows a higher thermally stable luminescence and its thermal quenching temperature T 50 was found to be 350°C, which is higher than that of commercial YAG:Ce3+ phosphor and ZnS:(Al, Ag) phosphor. Because NaSr1?x PO4: xSm3+ phosphor features a high colour-rendering index and chemical stability, it is potentially useful as a new scintillation material for white light-emitting diodes.  相似文献   

11.
A series of Sr3La(PO4)3:Eu2+/Mn2+ phosphors were synthesized by a solid state reaction. The phase and the optical properties of the synthesized phosphors were investigated. The XRD results indicate that the doped Eu2+ and Mn2+ ions do not change the phase of Sr3La(PO4)3. The peak wavelengths of Eu2+ single doped and Eu2+/Mn2+ codoped Sr3La(PO4)3 phosphors shift to longer wavelength due to the larger crystal field splitting for Eu2+ and Mn2+. The increases of crystal field splitting for Eu2+ and Mn2+ are induced by the substitution of Sr2+ by Eu2+ and Mn2+ in Sr3La(PO4)3 host. Due to energy transfer from Eu2+ to Mn2+ in Sr3La(PO4)3:Eu2+/Mn2+ phosphors, tunable luminescence was obtained by changing the concentration of Mn2+. And the white light was emitted by Sr3La(PO4)3:3.0 mol%Eu2+/4.0 mol%Mn2+ and Sr3La(PO4)3:3.0 mol%Eu2+/5.0 mol%Mn2+ phosphors.  相似文献   

12.
A series of polycrystalline Na4Ca4(Si6O18):Eu3+ orange emitting phosphors were synthesized by a conventional high-temperature solid-state reaction. The phase formation was confirmed by X-ray power diffraction analysis. The excitation spectra show a strong host absorption indicating an efficient energy transfer process from O2? to Eu3+ ions. Upon NUV radiation, the phosphors showed strong red emission around 610 nm (5D0 → 7F2) and orange emission around 591 nm (5D0 → 7F1), but the 5D1,2,3 emission nearly can not be seen. Compared with the luminescence properties of Li+, Na+, and K+ co-doped samples, we deduced that Na+ ions probably prefer to dope into the intrinsic Na vacancies rather than Ca2+ ions vacancies in Na4Ca4(Si6O18) crystal. Thermal stability properties, quantum efficiency and chromaticity coordinates of the phosphors have been investigated for the potential application in white LEDs.  相似文献   

13.
In this research, we reported the synthesis of Eu2+ and Dy3+ co-doped SrAl2O4 phosphor nanopowders with high brightness and long afterglow by urea-nitrate solution combustion synthesis (SCS) at 600 °C, followed by heating the resultant combustion ash at 1,200 °C in a weak reductive atmosphere (5% H2 + 95% N2). The broad-band UV-excited luminescence of the SrAl2O4: Eu2+, Dy3+ nanopowders was observed at λ max = 517 nm due to transitions from the 4f65d1 to the 4f7 configuration of the emission center (Eu2+ ions). The excitation spectra consist of 240- and 254 nm broad peaks. Finally, it was found that the optimum ratio of urea is 2.5 times higher than theoretical quantities for the best emission condition of SrAl2O4: Eu2+, Dy3+ phosphor nanopowders.  相似文献   

14.
Emission spectral results of Pr3+ & Ho3+ ions doped Ca4GdO(BO3)3 powder phosphors are reported here. XRD, SEM and FTIR measurements have been carried out for them. The emission spectrum of Pr3+: Ca4GdO(BO3)3 has shown an emission transition 1D23H4 at 606 nm with λexci = 480 nm (3H43P0) and Ho3+: Ca4GdO(BO3)3 phosphor has shown an emission transition 5S25I8 at 549 nm with λexci = 447 nm (5I85F1). Emission performances of these two phosphors have been explained in terms of energy level diagrams.  相似文献   

15.
The alkaline orthosilicates of M2SiO4 (M = Ba, Mg, Sr) activated with Dy3+ and co-doped with Ho3+ are prepared through conventional solid-state method, i.e., mixing and grinding of solid form precursors followed by high-temperature heat treatments of several hours in furnaces, generally under open atmosphere and investigated by X-ray diffraction (XRD) to get phase properties and photoluminescence (PL) analysis to get luminescence properties. The thermal behaviours of well-mixed samples were determined by differential thermal analysis (DTA)/thermogravimetry (TG). The PL spectra show that the 478 and 572 nm maximum emission bands are attributed, respectively, to 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ ions.  相似文献   

16.
Zn2GeO4, Zn2GeO4:Mn2+, Zn2GeO4:Pr3+ and Zn2GeO4:Mn2+/Pr3+ phosphors were fabricated by a solid state reaction. The phase and luminescent properties of the fabricated phosphors were investigated. The XRD patterns show that all of the fabricated phosphors have an orthorhombic structure. The fabricated Zn2GeO4 shows an emission band in the range of 350–550 nm. The fabricated Zn2GeO4:Mn2+ and Zn2GeO4:Pr3+ phosphors show emission bands corresponding to Mn2+ and Pr3+ ions, respectively. The fabricated Zn2GeO4:Mn2+/Pr3+ phosphor shows the emission band results from Mn2+ and the codoped Pr3+ enhances the emission intensity of Mn2+. Moreover, Zn2GeO4:Mn2+/Pr3+ phosphor exhibits longer decay time than that of Zn2GeO4:Mn2+. The higher intensity and longer lifetime of Mn2+ emission are induced by the energy transfer from Pr3+ of various vacancies to Mn2+ in Zn2GeO4:Mn2+/Pr3+ phosphors.  相似文献   

17.
The ultraviolet (UV)-emitting Sr3P4O13:Ce3+ phosphors were synthesized via the solid-state reaction method, and their structural, morphological and luminescence properties were characterized by X-ray diffraction analysis, scanning electron microscopy, photoluminescence spectroscopy. The obtained results indicate that these phosphors can be effectively excited by short-wavelength ultraviolet (<300 nm), and exhibit long-wavelength ultraviolet (300–380 nm) emission with nanosecond-level fluorescence lifetime corresponding to the parity-allowed 5d–4f transitions of Ce3+. The concentration-quenching phenomenon of Ce3+ in Sr3P4O13 host was also studied, in which the critical energy transfer distance between Ce3+ ions and concentration quenching mechanism were determined.  相似文献   

18.
YAl3(BO3)4:Tb3+ phosphors were fabricated by the sol–gel method. The phosphor showed prominent luminescence in green due to the magnetic dipole transition of 5D47F5. Structural characterization of the luminescent material was carried out with X-ray powder diffraction (XRD) analysis. Luminescence properties were analyzed by measuring the excitation and photoluminescence spectra. Photoluminescence measurements indicated that the phosphor exhibited bright green emission at about 541 nm under UV excitation. It is shown that the 11% of doping concentration of Tb3+ ions in YAl3(BO3)4:Tb3+ phosphors is optimum.  相似文献   

19.
YVO4:Bi3+,Ln3+ (Ln?=?Dy, Sm, Eu) phosphors were successful synthesized by microwave sintering method, and characterized by X-ray powder diffraction, scanning electron microscope, photoluminescence spectra, lifetime, quantum efficiency and general structure analysis system structure refinement. Refinement results indicated that the introduced ions occupy the sites of Y3+. Under 275 nm excitation, the luminescent intensity of YVO4:Bi3+ samples reach the maximum when Bi3+ concentration is 0.02, the broad excitation spectrum of YVO4:Bi3+ has a strongest peak at near 343 nm. Doped Bi3+ can effectively improve the emission intensity of YVO4:Ln3+. The energy transfer mechanism of Bi3+?→?Ln3+ was dipole-quadrupole mechanism of electric multipole interaction. The critical distance (Rc) between Ln3+ and Bi3+ were calculated by concentration quenching method. Emitting color of YVO4:Bi3+,Ln3+ phosphors were tunable by adjusting Ln3+ content. In a word, the material has a good application prospects on light emitting diodes.  相似文献   

20.
The luminescence properties of Sm3+ ions in YAl3B4O12 were studied upon synchrotron excitation in the 3.8–11 eV region. In addition to the 4f → 4f excitation bands, the excitation spectra of the Sm3+ emission contain broad bands at 6.1 and ~7.0 eV. These bands are attributed to charge transfer transition in Sm3+–O2− complexes and 4f → 5d transition of Sm3+ ions, respectively. The optical absorption edge of YAl3B4O12 was determined at 7.3 eV. A comparison with the results of electronic structure calculations on YAl3B4O12 is also made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号