首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mixed transition metal oxides (MTMOs) have received intensive attention as promising anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). In this work, we demonstrate a facile one-step water-bath method for the preparation of graphene oxide (GO) decorated Fe2(MoO4)3 (FMO) microflower composite (FMO/GO), in which the FMO is constructed by numerous nanosheets. The resulting FMO/GO exhibits excellent electrochemical performances in both LIBs and SIBs. As the anode material for LIBs, the FMO/GO delivers a high capacity of 1,220 mAh·g–1 at 200 mA·g–1 after 50 cycles and a capacity of 685 mAh·g–1 at a high current density of 10 A·g–1. As the anode material for SIBs, the FMO/GO shows an initial discharge capacity of 571 mAh·g–1 at 100 mA·g–1, maintaining a discharge capacity of 307 mAh·g–1 after 100 cycles. The promising performance is attributed to the good electrical transport from the intimate contact between FMO and graphene oxide. This work indicates that the FMO/GO composite is a promising anode for high-performance lithium and sodium storage.
  相似文献   

2.
Zinc-based bimetal oxides have received considerable attention as anode for lithium-ion batteries (LIBs). A one-pot self-assembly hydrothermal method is developed for the fabrication of 3D hierarchical structure aerogels from zinc stannate (ZnSnO3) and reduced graphene oxide (rGO). 3D interconnected porous structure with ZnSnO3 hexagon nanoplates uniformly dispersed on graphene sheets has been constructed successfully, in which the crystalline hexagon nanoplates ZnSnO3 are firstly used to prepare ZnSnO3-based anode materials for LIBs. The as-prepared ZnSnO3 nanoplates/reduced graphene oxide aerogels (ZnSnO3–rGAs) electrode demonstrates an excellent reversible capacity (780 mAh g?1) after 200 cycles at a certain current density (100 mA g?1) and still delivers a specific capacity of 460 mAh g?1 even at 1000 mA g?1. The superior performance of lithium storage is attributed to the 3D porous hierarchical structure and the synergistic effects of uniform hexagon nanoplates ZnSnO3 and rGO sheets.  相似文献   

3.
In this study, nanorods and nanosheets structure of Li4Ti5O12 (LTO) with higher capacity and cycle performance are prepared by hydrothermal synthesis. We can obtain different nanostructural LTO by changing heating time in autoclave and molar ratio between lithium (Li) and titanium (Ti). Precursor was calcined at 600 °C for 6 h in air after heating to 180 °C with the holding time of 12 and 24 h in Teflon-lined PTFE autoclave vessel, nanorods and nanosheets structure of LTO were prepared successfully, respectively. Specially, when the molar ratio between Li and Ti was 4.2:5, the discharge capacities were 177.7 and 230.7 mAh g?1 at 20 mA g?1, respectively. When the holding time was 24 h as well as molar ratio between Li and Ti was 4.2:5, the band gap was least, and this pure LTO reversible capacities reached 90.36 and 73.12% after 200 and 3000 cycles at 100 mA g?1 and 1 A g?1, respectively.  相似文献   

4.
In this work, a novel composite of Co3O4 nanoparticle and carbon nano-onions (CNOs) is synthesized by using ionic liquid as carbon and nitrogen source through a facile carbothermic reduction followed by low-temperature oxidation method. The SEM and HRTEM images reveal that the Co3O4 particles are homogenously embedded in the CNOs. Due to the unique nano-structure, the electrolyte contacts well with the active materials, leading to a better transfer of lithium ions. Moreover, the unique nano-structure not only buffers the volume changes but also facilitates the shuttling of electrons during the cycling process. As a result, the electrode made up of Co3O4/CNOs composite delivers favorable cycling performance (676 mAh g?1 after 200 cycles) and rate capability (557 mAh g?1 at the current of 1 C), showing a promising prospect for lithium-ion batteries as anode materials.  相似文献   

5.
Mn3O4 nanoparticles were in-situ synthesized in the 3D framework of reduced graphene oxide (RGO) by a facile one-step hydrothermal method. In the reduced graphene-Mn3O4 (RGM) composite, the RGO network not only serves as a mechanical support to construct a self-supported and binder-free electrode, but also offers 3D continuous conductive network for effective electron transfer. The Mn3O4 nanoparticles anchored uniformly across the RGO framework, which provided high capacity and prevented the restacking of the RGO thin sheets. Based on the unique composite structures, strong synergistic effect was achieved between Mn3O4 and RGO, resulting in superior specific capacity, enhanced rate capability, stable cycling performance and nearly 100% Coulombic efficiency in the RGM2 composites. With an optimal Mn3O4 composition of 44% by weight (similarly hereinafter), the composite exhibits high specific capacities of 696–795 mAh g1 based on the overall weight of the electrode in 60 cycles at 200 mA g?1, with a large coulombic efficiency of around 98%. Even at a high current density of 10,000 mA g?1, the composite can still deliver a capacity of 383 mAh g?1, demonstrating its excellent rate performance. The outstanding performances of the composites are attributed to the synergistic effect of both components and the hierarchical structure of the composite.  相似文献   

6.
The search for high capacity, low-cost electrode materials for lithium-ion batteries is a significant challenge in energy research. Among the numerous potential candidates, layered compounds such as MoS2 (Molybdenum Disulfide) have attracted increasing attention. A facile hydrothermal reduction process using hexadecyltrimethy ammonium bromide (CTAB) as surfactant was developed for the synthesis of lithium-ion battery anode material MoS2 nanoflowers. The impact of CTAB on morphology and electrochemical performance of MoS2 has been investigated. With the increase of CTAB content, MoS2 ultrathin nanosheets with high specific surface area and more active sites have been successfully synthesized. Electrochemical measurements demonstrated that MoS2 nanoflowers synthesized with 1% content of CTAB have better electrochemical performance than others as anode materials for Li-ion batteries, which yield a high discharge capacity of 1245 mAh g?1 at a current density of 50 mA g?1 and a stable capacity retention of 740 mAh g?1 until 100 electrochemical cycles.  相似文献   

7.
The cyclic stability of Cr2O3 is very poor due to the large volume change during lithiation/delithiation. In this study, we have found that Cr2O3 nanocrystals synthesized by using a simple hydrothermal method can improve its cyclic stability. Sample calcined at 430 °C has uniform size, compact structure and high crystallization degree. These Cr2O3 nanocrystals exhibit a stable cyclic performance of 185 mAh g?1 after 100 cycles at 100 mA g?1. It is useful in real life, such as providing power consumption for minitype device, etc.  相似文献   

8.
Sm3+-doped magnetite (Fe3O4) nanoparticles were synthesized through a one-pot facile electrochemical method. In this method, products were electrodeposited on a stainless steel (316L) cathode from an additive-free 0.005 M Fe(NO3)3/FeCl2/SmCl3 aqueous electrolyte. The structural characterizations through X-ray diffraction, field-emission electron microscopy, and energy-dispersive X-ray indicated that the deposited material has Sm3+-doped magnetite particles with average size of 20 nm. Magnetic analysis by VSM revealed the superparamagnetic nature of the prepared nanoparticles (Ms = 41.89 emu g?1, Mr = 0.12 emu g?1, and H Ci = 2.24 G). The supercapacitive capability evaluation of the prepared magnetite nanoparticles through cyclic voltammetry and galvanostat charge–discharge showed that these materials are capable to deliver specific capacitances as high as 207 F g?1 (at 0.5 A g?1) and 145 F g?1 (at 2 A g?1), and capacity retentions of 94.5 and 84.6% after 2000 cycling at 0.5 and 1 A g?1, respectively. The results proved the suitability of the electrosynthesized nanoparticles for use in supercapacitors. Furthermore, this work provides a facile electrochemical route for the synthesis of lanthanide-doped magnetite nanoparticles.  相似文献   

9.
The hollow Ni2P microspheres were prepared using a facile one-step template-free solvothermal method. The products were characterized and the results showed that they were pure hexagonal Ni2P microspheres, made up of large amounts of Ni2P nanoparticles, and had an obvious inner space in the central of the microspheres. After being investigated, it was found that these Ni2P hollow spheres initially were some solid spheres, but after a specified time, they were converted to a hollow structure by an Ostwald ripening process, some even had a multi-wall hollow structure. Meanwhile, the as-prepared Ni2P hollow spheres showed a good photocatalytic degradation performance for Methylene Blue in aqueous solution. Electrochemical measurements turned out that the Ni2P hollow spheres have a great cycling performance. The initial discharge capacity capacity of is Ni2P hollow spheres up to 660 mAh g?1 and it always keep in about 300 mAh g?1 within 100 cycles at the current density of 100 mA g?1.  相似文献   

10.
Ordered mesoporous carbon (CMK-3) was fabricated by a simple nanocasting method using SBA-15 as a hard template. The CMK-3 had a two-dimensional hexagonal mesoporous structure and a specific surface area of approximately 975.9 m2 g?1. The CMK-3 was modified by HNO3 solutions with magnetic stirring and ultrasonic activation, respectively, to explore the influence of various activation methods on pore structure, surface state, morphology, and electrochemical performance. The CMK-3 modified by ultrasonic activation (CMK-3-US) reached the optimal specific capacitance of 233.4 A g?1 at 0.5 A g?1 and retained 94.2% after 500 cycles in 3 M KOH electrolyte. Furthermore, a symmetric supercapacitor was successfully assembled using CMK-3-US electrodes, which delivered an excellent energy density of 21.5 Wh kg?1 at a power density of 225 W kg?1 and exhibited great long-term stability with 97.5% retention after 4000 cycles. Compared to magnetic stirring activation, ultrasonic cavitation could better increase the efficiency of the HNO3 activation for mesoporous carbon particles. The results indicate ultrasonic activation is an efficient way to modify carbon-based electrode materials for supercapacitors.  相似文献   

11.
MnO2 nanoparticle/three dimensional graphene composite (MnO2/3DG) was synthesized by a hydrothermal template-free method and subsequent ultrasonic treatment in KMnO4 solution. The MnCO3/3DG particles can be detected after the hydrothermal process, which may be produced through the reaction between Mn2+ and \({\text{C}}{{\text{O}}_{\text{3}}}^{{\text{2}} - }\) due to the decarboxylation of GO under the hydrothermal condition. The final product MnO2/3DG displayed high specific capacitance (324 F g??1 at 0.4 A g?1) and good cycle stability (91.1% capacitance retention after 5000 cycles). Furthermore, the asymmetric supercapacitor assembled with MnO2/3DG and activated carbon (AC) exhibits an energy density of 33.78 Wh kg?1 at the powder density of 380 W kg?1. The excellent supercapacitance of the MnO2/3DG composite may be due to the high pseudocapacitance of the dispersed MnO2 nanoparticles and the conductive graphene with three dimensional porous microstructure.  相似文献   

12.
Scrupulous design and fabrication of advanced electrode materials are vital for developing high-performance sodium ion batteries. Herein, we report a facile one-step hydrothermal strategy for construction of a C-MoSe2/rGO composite with both high porosity and large surface area. Double modification of MoSe2 nanosheets is realized in this composite by introducing a reduced graphene oxide (rGO) skeleton and outer carbon protective layer. The MoSe2 nanosheets are well wrapped by a carbon layer and also strongly anchored on the interconnected rGO network. As an anode in sodium ion batteries, the designed C-MoSe2/rGO composite delivers noticeably enhanced sodium ion storage, with a high specific capacity of 445 mAh·g-1 at 200 mA·g-1 after 350 cycles, and 228 mAh·g-1 even at 4 A·g-1; these values are much better than those of C-MoSe2 nanosheets (258 mAh·g-1 at 200 mA·g-1 and 75 mAh·g-1 at 4 A·g-1). Additionally, the sodium ion storage mechanism is investigated well using ex situ X-ray diffraction and transmission electron microscopy methods. Our proposed electrode design protocol and sodium storage mechanism may pave the way for the fabrication of other high-performance metal diselenide anodes for electrochemical energy storage.
  相似文献   

13.
The MnO/graphene hybrid nanocomposites were prepared by an in situ reduction method. The MnO2 nanorods were attached on the graphene oxides (GOs) to form the MnO2/GO nanocomposites, which were reduced to the MnO/graphene hybrid under argon atmosphere. As the anode material for the lithium ion batteries, the MnO/graphene electrodes delivered a high initial charge capacity up to 747 mAh g?1 and a stable capacity of 705.8 mAh g?1 after 100 cycles, which is much superior to pure MnO with initial charge capacity of 456 mAh g?1 and the stable capacity of 95.6 mAh g?1 after 100 cycles. The scanning electron microscope images of the MnO/graphene hybrid nanocomposites after cycling demonstrated that the graphene could prevent the MnO from aggregating during the charge/discharge process.  相似文献   

14.
TiO2/carbon (C/TiO2) composites have been synthesized via an in-situ pyrolysis method using bread as carbon source and investigated as anodes for lithium-ion batteries. As a cheap and common staple food with a sponge-like structure, bread contains a certain amount of moisture, enabling the hydrolysis of tetrabutyl orthotitanate. It is characterized that TiO2 nanocrystallites are embedded in bread-derived carbon matrix, and their synergetic effect on improving electrochemical properties is demonstrated as well. Partially surface lithium storage of ultrasmall TiO2 particles is credited to the unique embedment structure. Meanwhile, the carbon species are of importance in enhancing reversible capacities and accelerating interfacial charge transfer. It delivers a reversible capacity of 231 mAh g?1 at a specific current of 100 mA g?1 after 200 cycles for the resultant C/TiO2 composite with 38.8 wt.% carbon. This work presents a facile strategy toward scalable and eco-friendly preparation of metal oxides compositing with carbonaceous materials.  相似文献   

15.
A novel SnO2/graphene composite has been synthesized via an in situ chemical synthesis method, in which single crystal SnO2 nanosheets are uniformly grown on graphene support. The as-prepared products were characterized by X-ray diffraction, field emission scanning electron microscope, transmission electron microscope, Thermogravimetric analyses and Nitrogen adsorption/desorption. When used as an anode material for lithium ion batteries, the SnO2/graphene composite exhibits an enhanced reversible lithium storage capacity and good cyclic performance. The first discharge and charge capacities are 1,366 and 975 mAh g?1, respectively. After 100 cycles, the reversible discharge capacity is still maintained at 451 mAh g?1 at the current densities of 100 mA g?1, indicating that it’s a promising anode material for high performance lithium ion batteries.  相似文献   

16.
A Co9S8/C nanocomposite has been prepared using a solid-state reaction followed by a facile mechanical ball-milling treatment with sucrose as the carbon source. The phases, morphology, and detailed structures of Co9S8/C nanocomposite are well characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Our experimental results show that not only a process of particle size reduction, the ball-milling treatment also promotes the carbon and Co9S8 combining with each other more effectively to form an ultrafine nanocomposite. When used as an electrode material in supercapacitor, Co9S8/C nanocomposite exhibits a high initial specific capacitance of 756.2 F g?1 at 1 A g?1 and excellent cycling stability with 73.4% retention after 2000 cycles. Its outstanding electrochemical properties are mainly attributed to the nanosize of particles and amorphous carbon layer coating on its surface.  相似文献   

17.
In this work, a functionalized mesoporous carbon (CMK-3-O) was synthesized after oxidation with nitric acid and was used to adsorb dibenzothiophene (DBT) from model oil for the first time. Then, its performance was compared with that of CMK-3. The functionalized mesoporous carbon, CMK-3-O, showed better a capacitance performance for DBT adsorption than that of CMK-3. The maximum adsorption capacity was obtained for functionalized mesoporous carbon at optimum conditions with 6 M HNO3 aqueous solution and 30 min contact time. The physical and structural properties of CMK-3-O and CMK-3 were investigated with X-ray diffraction method (XRD), N2 adsorption–desorption isotherm, FT-IR, and elemental analysis (CHNO). Results of the elemental analysis showed that the oxygen and nitrogen content has increased and the carbon content has decreased through oxidation treatment. The effects of various factors on the adsorption process (such as temperature, amount of adsorbent, contact time, and concentration) of DBT were studied. CMK-3-O showed a maximum adsorption capacity of 86.96 mg DBT g?1 of CMK-3-O at optimized conditions (temperature, 25°C; adsorbent dosage, 20 g L?1; contact time, 60 min), which was a higher adsorption capacity of that observed for CMK-3 (57.47 mg DBT g?1 of CMK-3). Kinetic studies have revealed that the adsorption of DBT can be described by a pseudo-second-order rate equation. Equilibrium data showed that adsorption process was best represented by the Langmuir model. The results also illustrated the fact that the regenerated adsorbent afforded 64.3% of the initial adsorption capacity after the two regeneration cycles.  相似文献   

18.
Nanomaterials with electrochemical activity are always suffering from aggregations, particularly during the high-temperature synthesis processes, which will lead to decreased energy-storage performance. Here, hierarchically structured lithium titanate/nitrogen-doped porous graphene fiber nanocomposites were synthesized by using confined growth of Li4Ti5O12 (LTO) nanoparticles in nitrogen-doped mesoporous graphene fibers (NPGF). NPGFs with uniform pore structure are used as templates for hosting LTO precursors, followed by high-temperature treatment at 800 °C under argon (Ar). LTO nanoparticles with size of several nanometers are successfully synthesized in the mesopores of NPGFs, forming nanostructured LTO/NPGF composite fibers. As an anode material for lithium-ion batteries, such nanocomposite architecture offers effective electron and ion transport, and robust structure. Such nanocomposites in the electrodes delivered a high reversible capacity (164 mAh·g–1 at 0.3 C), excellent rate capability (102 mAh·g–1 at 10 C), and long cycling stability.
  相似文献   

19.
Sn-doped δ-MnO2 (Sn-MnO2) hollow nanoparticles have been synthesized via chemical process at room temperature. Many characterizations have been carried out to fully identify the intrinsic information of the as-prepared samples and investigate their electrochemical properties. The results indicate that the morphologies of the samples can be adjusted by changing the concentration of Sn while the capacitance of Sn-MnO2 nanoparticles increased corresponded with that of the undoped δ-MnO2 nanoparticles. The specific capacitance of Sn(1 at.%)-MnO2 is up to 258.2 F g??1 at a current density of 0.1 A g??1. What’s more, over 90% of the initial specific capacitance still remains after 1000 cycles at a current density of 2.0 A g??1, displaying excellent cycling stability.  相似文献   

20.
Carbon-coating Na3V2(PO4)2F3 nanoparticles (NVPF@C NP) were prepared by a hydrothermal assisted sol–gel method and applied as cathode materials for Na-ion batteries. The as-prepared nanocomposites were composed of Na3V2(PO4)2F3 nanoparticles with a typical size of ~?100 nm and an amorphous carbon layer with the thickness of ~?5 nm. Cyclic voltammetry, rate and cycling, and electrochemical impedance spectroscopy tests were used to discuss the effect of carbon coating and nanostructure. Results display that the as-prepared NVPF@C NP demonstrates a higher rate capability and better long cycling performance compared with bare Na3V2(PO4)2F3 bulk (72 mA h g?1 at 10 C vs 39 mA h g?1 at 10 and 1 C capacity retention of 95% vs 88% after 50 cycles). The remarking electrode performance was attributed to the combination of nanostructure and carbon coating, which can provide short Na-ion diffusion distance and rapid electron migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号