首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphors of nanoparticles LaSrAl3O7:RE3+ (RE = Eu, Tb) have been prepared by a sol–gel method. The structure and luminescent properties of LaSrAl3O7:Eu3+ and LaSrAl3O7:Tb3+ phosphors were characterized by X-Ray diffraction (XRD) and atomic force microscopy (AFM), photoluminescence excitation and emission spectra were utilized. From XRD patterns, it is indicated that the phosphor LaSrAl3O7 forms without impurity phase at 900 °C. From AFM images, it is shown that the crystal size of the phosphors are about 60–80 nm. Upon excitation with ultraviolet (UV) irradiation, it is shown that there is a strong emission at around 617 nm corresponding to the forced electric dipole 5D07F2 transition of Eu3+, and at around 543 nm corresponding to the 5D47F5 transition of Tb3+. The dependence of photoluminescence intensity on Eu3+ (or Tb3+) concentration and annealing temperature were also studied in detail.  相似文献   

2.
The positions of Stark levels have been determined, using a step-by-step procedure, in the 4I9/2 and 4F3/2 manifolds of Nd3+ ions from absorption and photoluminescence measurements in the 12–293 K temperature range. This data has been used to calculate the emission cross-section for which the maximum value turns out to be ~2.3 × 10?20 cm2. The radiative recombination time, calculated using Judd–Ofelt analysis, of the 4F3/2 manifold is in close vicinity to the experimentally determined times that were measured by the conventional decay of PL after interruption of excitation and by QFRS. Moreover, the peak time defined by QFRS is independent of temperature. Therefore, the dominant relaxation mechanism from the 4F3/2 excited manifold of Nd3+ ions in GaLaS glass is believed to be by radiative emission.  相似文献   

3.
We have synthesized nanoparticulate cobalt(II) hydroxide containing Co2+ in tetrahedral oxygen coordination (Co Td 2+ ), atypical of such systems: nano- [Co(OH)2(H3O) δ + ]δ+. The (Co Td 2+ ) coordination in the hydroxide is inferred from its electronic diffuse reflectance spectrum, which shows a multiplet of strong absorption bands at 14500, 15000, and 16000 cm?1 (4 A 2(F)-4 T 1(P) transition). Nanoparticulate cobalt(II) hydroxide forms in a weakly acidic medium under essentially nonequilibrium conditions due to supersaturation (by three to four orders of magnitude) with the starting reagents (CoCl2 and LiOH) at the instant of the formation of the poorly soluble phase Co(OH)2. Presumably, colloidal particles of nanoparticulate cobalt(II) hydroxide in a weakly acidic aqueous medium have a positive surface charge, compensated by a counter-ion (Cl?) layer: nano-[Co(OH)2(H3O) δ + ]δ+ · δCl?. The XRD patterns of pastes (gels) containing this hydroxide show three broad-ened lines with d = 5.31 (2θ = 16.7°), 2.77 (2θ = 32.3°), and 2.32 Å (2θ = 38.8°). According to small-angle X-ray scattering data, nano-[Co(OH)2(H3O) δ + ]δ+ has a narrow particle size distribution (1.0–2.0 nm). Synthesis and storage conditions are identified which ensure stabilization of the electronic state and particle size of nano-[Co(OH)2(H3O) δ + ]δ+ for a long time.  相似文献   

4.
The enthalpy stability of the LaCl 4 ? and LuCl 4 ? ions is assessed using high-temperature mass spectrometry. The enthalpy of Cl? detachment is determined to be ΔrH0(298.15 K) = 332 ± 10 kJ/mol for LaCl 4 ? and 359 ± 10 kJ/mol for LuCl 4 ? .  相似文献   

5.
The Ba2P2O7:Tb3+, R (R?=?Eu2+, Ce3+) phosphors were synthesized by use of a co-precipitation method. Crystal phase, excitation and emission spectra of sample phosphors are analyzed by means of XRD and FL, respectively. The emission spectra of Ba2P2O7:Ce3+, Tb3+ phosphors exhibit four linear peaks attributed to the 5D4?→?7FJ (J?=?6–3) transition of Tb3+ while four broad emission bands are observed in the emission spectra of Ba2P2O7:Eu2+, Tb3+ phosphors. The effects of Eu2+ concentration on the luminescent properties of Ba2P2O7:Tb3+, R (R?=?Eu2+, Ce3+) are studied. Ce3+ affects the luminescent properties of Ba2P2O7:Ce3+, Tb3+ phosphors just as the sensitizer. However, Eu2+ is considered both as the sensitizer and the activator in Ba2P2O7:Eu2+, Tb3+ phosphors. The chromaticity coordinates of Eu2+ and Tb3+ co-doped phosphors gather around the white light field with the CCT approximate to 5000 K, indicating that the luminescent property of Ba2P2O7:Eu2+, Tb3+ phosphors may approach to a desired level needed for white LED application.  相似文献   

6.
The successful incorporation of ZnO nanoparticles in Pr3+-doped SiO2 using a sol–gel process is reported. SiO2:Pr3+ gels, with or without ZnO nanoparticles, were dried at room temperature and annealed at 600 °C. On the basis of the X-ray Diffraction (XRD) results, the SiO2 was amorphous regardless of the incorporation of Pr3+ and nanocrystalline ZnO or annealing at 600 °C. The particles were mostly spherical and agglomerated as confirmed by Field Emission Scanning Electron Microscopy. Thermogravimetric analysis of dried gels performed in an N2 atmosphere indicated that stable phases were formed at ≥900 °C. Absorption bands ascribed to 3H4-3P(J = 0,1,2), 1I6 and 1D2 in the UV–VIS region were observed from SiO2:Pr3+ colloids. The red cathodoluminescent (CL) emission corresponding to the 3P0 → 3H6 transition of Pr3+ was observed at 614 nm from dried and annealed SiO2:Pr3+ powder samples. This emission was increased considerably when ZnO nanoparticles were incorporated. The CL intensity was measured at an accelerating voltage of 1-5 keV and a fixed beam current of 8.5 μA. The effects of accelerating voltage on the CL intensity and the CL degradation of SiO2:Pr3+ and ZnO·SiO2:Pr3+ were also investigated using Auger electron spectroscopy coupled with an Ocean Optics S2000 spectrometer.  相似文献   

7.
This paper presents results of a 57Fe probe Mössbauer spectroscopy study of the BiNi0.9657Fe0.04O3 nickelate. The spectra measured above its TN demonstrate that Fe3+ cations heterovalently substitute for Ni2+ nickel (←Fe3+), being stabilized on four sites of the nickel sublattice in the structure of BiNiO3. Calculations in an ionic model with allowance for monopole and dipole contributions to the electric field gradient indicate that the parameters of electric hyperfine interactions between 57Fe probe atom nuclei reflect the specifics of the local environment of the nickel in the structure of the unsubstituted BiNiO3 nickelate. Below TN, Mössbauer spectra transform into a complex Zeeman structure, which is analyzed in terms of first-order perturbation theory with allowance for electric quadrupole interactions as a small perturbation of the Zeeman levels of the 57Fe hyperfine structure, as well as for specific features of the magnetic ordering of the Ni2+ cations in the nickelate studied.  相似文献   

8.
Glasses of the 0.5Er3+/2.5Yb3+ co-doped (40Bi2O3–20GeO2–(30 − x)PbO–xZnO–10Na2O system where x = 0.0, 5, 10, 15, 20, 25, and 30 mol%) have been characterized by FT-IR spectroscopy measurements to obtain information about the influence of ZnO-substituted PbO on the local structure of the glass matrix. The density and the molar volume have been determined. The influences of the ZnO-substituted PbO on the structure of glasses have been discussed. The dc conductivity measured in the temperature range 475–700 K obeys Arrhenius law. The conductivity decreases while the activation energy for conduction increases with increase ZnO content. The optical transmittance and reflectance spectrum of the glasses have been recorded in the wavelength range 400–1100 nm. The values of the optical band gap E opt for all types of electronic transitions and refractive index have been determined and discussed. The real and imaginary parts ε1 and ε2 of dielectric constant have been determined.  相似文献   

9.
The absorption spectra of the NpO 2 + (5f 2) ion were examined in the region of the 3H 53 H 4 magnetic dipole transition (1530–1760 nm) for series of melts with the UO 2 2+ concentration varied in the opposite directions: (1) NaCl-2CsCl eutectic melt with growing additions of the Cs2UO2Cl4 complex salt and (2) Cs2UO2Cl4 melt with growing additions of the NaCl-2CsCl mixture. Measurements of the integrated intensities of the bands belonging to the NpO 2 + ·UO 2 2+ complex and unbound NpO 2 + throughout the UO 2 2+ concentration range examined (up to 4.4 M in neat Cs2UO2Cl4 melt) and processing of the data obtained in terms of the mass action law showed that the formation-decomposition reaction of the cation-cation complex can be described adequately only using the equation of reaction in the form NpO2Cl 4 3? + UO2Cl 4 2? ? {Cl4ONpO?UO2Cl3}4? = Cl? (with the equilibrium constant of 1.3±0.1). Thus, the formation of the cationcation complex should be treated as replacement of chloride ion in the equatorial plane of uranyl(VI) by neptunyl(V), rather than as simple addition of UO 2 2+ to NpO 2 + . The reverse reaction, decomposition of the cation-cation complex, consists essentially in replacement of neptunyl(V) by chloride ion.  相似文献   

10.
The mass spectrum of the products of arc discharge in helium between graphite electrodes has been studied for various values of the gas flow rate. As the gas flow rate increases, the intensity of C60±, C70±, C84± and C90± fullerene peaks increases and that of the C2 and C3+ cluster radicals decreases, but the total decay in radicals amounts to only 21% of the total growth of fullerenes. From this it follows that a contribution to the formation of fullerenes from the neutral clusters (which are taken into account for the first time) significantly exceeds the contribution due to small radical species.  相似文献   

11.
Super-acid catalyst, SO4 2?/ZrO2–SiO2, with high zirconium loading was synthesized and the nature of the surface acid was investigated by FT-IR of pyridine adsorption. With the increasing ZrO2 content, the Lewis and Brønsted acid sites increased and reached the maximum when Zr/Si (molar ratio) = 1.3. The sample with Zr/Si = 1.3 showed the strongest IR adsorption band in the S=O stretching region (1,300–1,400 cm?1). Pyrosulfate and monosulfate species existed on the surface of the catalysts and the acidic strength could be enhanced by induction effect of their S=O groups. And there were two kinds of Brønsted acid sites on the surface of the catalysts.  相似文献   

12.
Ce3+ doping of Y2O2S:Er3+ can be used to suppress the visible anti-Stokes luminescence of the phosphor under excitation in the range 0.90–0.98 μm. We take advantage of this effect to create a new, efficient “invisible” IR phosphor emitting in the range 1.5–1.6 μm.  相似文献   

13.
SrAl2O4:Eu2+,Dy3+-polyethylene terephthalate (PET)/light conversion agent-PET, which is a new skin–core structure luminous fiber that can emit red light in the darkness, was fabricated by melt spinning with the combination of light conversion agent-PET and SrAl2O4:Eu2+,Dy3+-PET. An energy transfer occurred between SrAl2O4:Eu2+,Dy3+ and light conversion agent, and the light conversion agent emitted red light absorbed from SrAl2O4:Eu2+,Dy3+. To investigate the effect of light conversion agent on the luminous properties of SrAl2O4:Eu2+,Dy3+-PET-light conversion agent, several kinds of luminous fiber that contained different light conversion agents were artificially manufactured and their luminous properties were investigated. Results showed that under near-ultraviolet excitation, the fluorescent color of luminous fiber was primarily located in the orange-red area, with more intense red color than the others.  相似文献   

14.
We have developed a process for the synthesis of Ni(II) and Zn(II) triuranates with the general formula MIIU3O10 · 6H2O through reaction of schoepite, UO3 · 2.25H2O, with aqueous solutions of nickel and zinc nitrates under hydrothermal conditions. Using chemical analysis, X-ray diffraction, IR spectroscopy, and thermal analysis, we have determined the composition and structure of the triuranates and investigated their dehydration and thermal decomposition.  相似文献   

15.
This paper reported on optical spectra of Na5Lu9F32 single crystals co-doped with ~?0.91 mol% Ho3+ and various Yb3+ concentrations by using an improved Bridgman method. The emission spectra and fluorescence decay curves were measured to investigate the luminescent properties of the Ho3+/Yb3+ co-doped Na5Lu9F32 and the energy transfer process from Yb3+ to Ho3+ ion. Compared with the Ho3+ singly doped Na5Lu9F32 crystal, the Ho3+/Yb3+ co-doped crystal had an obviously enhanced emission at 2.0 µm via the 980 nm laser diode excitation because of the efficient energy transfer from Yb3+ to Ho3+ ion. The maximum emission intensity at 2.0 µm was obtained at about 6.99 mol% Yb3+ concentration when the concentration of Ho3+ ions is fixed at ~?0.91 mol% in the current research. The maximum emission cross section of the above sample at 2.0 µm was calculated to be 1.23?×?10?20 cm2 according to the measured emission spectrum. The energy transfer efficiency from Yb3+:2F5/2 to Ho3+:5I6 for the crystal was estimated up to 90.8% indicating that Yb3+ ions can efficiently sensitize the Ho3+ ions.  相似文献   

16.
Ho3+-modified Pb(Zn1/3Nb2/3)O3–9PbTiO3 (PZN–9PT) single crystals were grown through a flux method. Phase structure and microstructural morphology of the as-grown single crystals were performed by X-ray diffraction analysis and scanning electron microscopy. The refinement of the lattice parameters were obtained by the Rietveld method. The electrical properties of PZN–9PT single crystals were improved significantly by the modification of Ho3+ ions. The rhombohedral–tetragonal phase transition temperature, Curie temperature, coercive field at 15 kV cm?1, and remnant polarization of Ho3+-modified PZN–9PT single crystals were increased by 14, 42 K, 2.4 kV cm?1, and 7.5 μC cm?2, respectively (i.e., 375.45, 448.45 K, 5.9 kV cm?1, and 38.40 μC cm?2, respectively). Furthermore, Lorentz-type law was used to describe the dielectric relaxor behavior of the as-grown single crystals.  相似文献   

17.
The total stability constants of Th4+, U4+, Np4+, Pu4+, Am4+, Cm4+, Ce4+, Tb4+, Pr4+, Tb3+, and Pr3+ complexes with P2W17O 61 10? heteropolyanion in 1 M sodium salt solutions at pH ≥ 5.5 (i.e., when the anion is not protonated; so-called “absolute” constants), were determined experimentally or calculated from published data. Plots of constants vs. ionic radius of the f element were considered for solutions with ionic strength 1 (1 M acid or sodium salt solutions at pH ≥ 5.5). The correlations found confirm that the interaction of counterions in the complex is predominantly electrostatic. At the same time, different contributions of the covalent interaction for actinides and lanthanides were suggested.  相似文献   

18.
Garnet phosphor Y3Al5O12:Ce3+ is prepared in the Y2O3–Al metal–CeO2 ternary system by the solid-state reaction method in the air. For the first time, metal Al is used as a source of aluminum for the reaction instead of traditional oxide Al2O3. It is shown that the chemical reaction can be realized at lower temperatures and without use of special reducing atmosphere. The structural and spectroscopic properties of the prepared powder phosphor are very close to those earlier reported for the Y3Al5O12:Ce3+ single crystal.  相似文献   

19.
20.
Lithium ion transport has been studied in bismuth lithium phosphate glasses in the frequency range 20 Hz–1 MHz and in the temperature range 423–573 K using impedance spectroscopy. The addition of Bi2O3 in Li2O·P2O5 glass is related to the modification of the glass structure and facilitates the Li+ ions migration. The ac and dc conductivities, activation energy of the dc conductivity and relaxation frequency are extracted from the impedance spectra. Conductivity of the present glass system is found to be ionic in nature. The electrical response of the glasses has been studied using both conductivity and electric modulus formalisms. A single ‘master curve’ for normalized plots of all the modulus isotherms observed for a given composition indicates the temperature independence of the dynamic processes for ions in these glasses. Nearly identical values of activation energy for dc conduction and for conductivity relaxation time indicate that the ions overcome same energy barrier while conducting and relaxing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号