首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium (Ti) metal was soaked in HCl solution after NaOH treatment and then subjected to heat treatments at different temperatures. Their apatite-forming abilities in a simulated body fluid (SBF) were discussed in terms of their surface structures and properties. The nanometer scale roughness formed on Ti metal after NaOH treatment remained after the HCl treatment and a subsequent heat treatment below 700°C. Hydrogen titanate was formed on Ti metal from an HCl treatment after NaOH treatment, and this was converted into titanium oxide of anatase and rutile phases by a subsequent heat treatment above 500°C. The scratch resistance of the surface layer increased with the formation of the titanium oxide after a heat treatment up to 700°C, and then decreased with increasing temperature. The Ti metal with a titanium oxide layer formed on its surface showed a high apatite-forming ability in SBF when the heat treatment temperature was in the range 500–700°C. The high apatite-forming ability was attributed to the positive surface charge in an SBF. These positive surface charges were ascribed to the presence of chloride ions, which were adsorbed on the surfaces and dissociated in the SBF to give an acid environment.  相似文献   

2.
Polyethylene (PE), polyethylene terephthalate (PET), ethylene-vinyl alcohol copolymer (EVOH), and poly(ε-caprolactam) (Nylon 6) were successfully modified with a thin crystalline titanium oxide layer on their surfaces by a simple dipping into a titanium alkoxide solution and a subsequent soak in hot HCl solution, without the aid of a silane-coupling agent. The surface modified polymers formed a bone-like apatite layer in a simulated body fluid (SBF) within a period of 2 days. PE, PET, and Nylon 6 formed an apatite layer faster and had a higher adhesive strength to the apatite. Three-dimensional fabrics with open spaces in various sizes containing such surface modified polymer fibers are expected to be useful as bone substitutes, since they may be able to form apatite on their constituent fibers in the living body, and thus, integrate with living bone.  相似文献   

3.
A recently developed “GRAPE® technology” provides titanium or titanium alloy implants with spontaneous apatite-forming ability in vitro, which requires properly designed gaps and optimum heat treatment in air. In this study, titanium alloy and commercially pure (cp) titanium substrates were thermally oxidized in air before aligning pairs of specimens in the GRAPE® set-up, i.e., titanium alloy and cp titanium substrates were aligned parallel to each other with optimum gap width (spatial design). A liquid phase deposition (LPD) technique was employed for titania coatings on titanium alloy substrate. Then, they were soaked in Kokubo’s simulated body fluid (SBF, pH 7.4, 36.5 °C) for 7 days to confirm the in vitro apatite formation on the substrates under the specific spatial design. Anatase-type titania coatings fabricated by using LPD technique led to the deposition of apatite particles within 7 days and showed apatite X-ray diffraction. On the other hand, thermally oxidized titanium alloy substrate in air and non-treated specimens did not show any apatite X-ray diffraction. These results indicated that the heterogeneous nucleation of apatite induced on anatase-type titania coating prepared by LPD technique when it was aligned parallel to thermally oxidized cp titanium substrate with optimum gap width.  相似文献   

4.
An antibacterial and bioactive titanium (Ti)-based material was developed for use as a bone substitute under load-bearing conditions. As previously reported, Ti metal was successively subjected to NaOH, CaCl2, heat, and water treatments to form a calcium-deficient calcium titanate layer on its surface. When placed in a simulated body fluid (SBF), this bioactive Ti formed an apatite layer on its surface and tightly bonded to bones in the body. To address concerns regarding deep infection during orthopedic surgery, Ag+ ions were incorporated on the surface of this bioactive Ti metal to impart antibacterial properties. Ti metal was first soaked in a 5 M NaOH solution to form a 1 μm-thick sodium hydrogen titanate layer on the surface and then in a 100 mM CaCl2 solution to form a calcium hydrogen titanate layer via replacement of the Na+ ions with Ca2+ ions. The Ti material was subsequently heated at 600 °C for 1 h to transform the calcium hydrogen titanate into calcium titanate. This heat-treated titanium metal was then soaked in 0.01–10 mM AgNO3 solutions at 80 °C for 24 h. As a result, 0.1–0.82 at.% Ag+ ions and a small amount of H3O+ ions were incorporated into the surface calcium titanate layers. The resultant products formed apatite on their surface in an SBF, released 0.35–3.24 ppm Ag+ ion into the fetal bovine serum within 24 h, and exhibited a strong antibacterial effect against Staphylococcus aureus. These results suggest that the present Ti metals should exhibit strong antibacterial properties in the living body in addition to tightly bonding to the surrounding bone through the apatite layer that forms on their surfaces in the body.  相似文献   

5.
The nano-sized hydroxyapatite (n-HA) was incorporated into poly(d,l-Lactide) (PDLLA) to form a bioactive and biodegradable composite for application in hard tissue replacement and regeneration. Thin film of PDLLA composite containing 20 mass% of n-HA fillers was successfully developed through integration of solvent co-blending and hot pressing techniques. firstly, n-HA and PDLLA were chemically synthesized, respectively, then mixed together and homogeneously dispersed in N,N-dimethyl formamide(DMF) solvent, finally, the dried blended hybrid containing PDLLA matrix and n-HA fillers was put into the mould and compacted by hot-pressing machine under 8 MPa pressure at 110 °C for 15 min. In vitro studies were conducted using the simulated body fluid(SBF). Composite specimens were soaked in SBF from 1 day to 21 days prior to surface analysis. Results obtained from scanning electron microscopy(SEM) examination, Energy dispersive X-ray detector(EDX) analysis and X-ray diffraction (XRD) analysis showed that a layer of non-stoichiometric apatite formed within 7 days on HA/PDLLA composite surface after its immersion in SBF, demonstrating moderate in vitro bioactivity of n-HA/PDLLA composite, though a moderate rate of apatite formation in SBF was found on initial stage of immersion periods for n-HA/PDLLA composite, compared to the other biomaterial composite. This type of composite film exhibited certain desirable bioactive characteristics, and they are promising bone candidates to develop novel bioactive composites for biomedical application.  相似文献   

6.
The apatite was formed on the titanium plates with NaOH and heat treatments by biomimetic process. The influence of titanium surface microstructure on the apatite formation onto titanium substrate in SBF solution was investigated. After biomimetic process, nano-sized apatite layers were found on the Ti plates with NaOH and heat treatments. However, the morphologies of formed apatite on substrate had different shapes such as coated, load-like, and linked. The morphology of apatite formed by biomimetic process would be affected by alkaline treatment, and substrate morphology and phase.  相似文献   

7.
Low-temperature deposition of crystalline titania films on intrinsically bioinert materials to induce the bioactivity is of practical interest, not only because it meets the demand of providing organic biomaterials with bioactivity, which cannot tolerate high-temperature thermal treatments, but also because it reserves abundant Ti–OH groups facilitating the apatite deposition. In this paper, rutile films with thickness varied from 0.1 μm to 1.7 μm were deposited on commercially available pure titanium substrates from 1.5 M titanium tetrachloride aqueous solution kept at 60 °C for 3–60 h. The rutile films grew to give a preferred (101) crystalline plane in the X-ray diffraction pattern. After soaking in a simulated body fluid of the Kokubo solution (SBF) for 2 days, the rutile films with thickness over 0.6 μm were covered with a layer of apatite. All the films with various thickness induced apatite deposition in SBF after soaking for 5 days. The bioinert polytetrafluoroethylene (PTFE) was also found to exhibit remarkable in vitro bioactivity as to induce apatite deposition from SBF within 2 days, after depositing the rutile film on the surface. This work is supported partly by the Natural Science Foundation of Zhejiang Province under the project No. M503011.  相似文献   

8.
Chemical surface treatment of silicone for inducing its bioactivity   总被引:3,自引:0,他引:3  
It has been confirmed that the apatite nucleation is induced by silanol (Si–OH) groups formed on the surfaces of materials and/or silicate ions adsorbed on them.It was previously shown that apatite nuclei are formed on organic polymers when the polymers are placed on CaO, SiO2-based glass particles soaked in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, and that they grow spontaneously to form a dense and uniform apatite layer together with high adhesive strength to the substrates when the polymers are soaked in another solution with ion concentrations 1.5 times the SBF. In the present study, silanol groups bonded covalently to the surface of the silicone substrate were formed and its apatite-forming ability was examined. When silicone substrates were treated with 5 or 10 M NaOH with pH 7.25 at 36.5°C for more than 3 h, silanol groups were formed on the surfaces of the substrates. When thus NaOH-treated substrates were soaked in 1.5SBF at 36.5°C, a bone-like apatite was formed on the substrates in a short period. © 1998 Chapman & Hall.  相似文献   

9.
Hybrid coatings of poly(L-lysine) and apatite were formed on the micro-arc oxidized titania through a biomimetic process. Phosphorous (P)-containing titania films were prepared by micro-arc oxidation (MAO) of titanium (Ti) substrates in an electrolyte solution containing β-glycerol phosphate disodium salt pentahydrate. The hybrid coatings were grown by immersing MAO titania in the poly(L-lysine)-containing simulated body fluid (SBF) solution. After 72 h immersion, the globular precipitates appeared on the surface of titania films and grew up to ~ 10 µm. These precipitates consisted of 100–200 nm nano-flakes with a distorted (less straight) morphology. XRD and FT-IR confirmed that these precipitates were poly(L-lysine)-containing apatite nanocomposite.  相似文献   

10.
等离子体喷涂氧化钛涂层的生物活性研究   总被引:1,自引:0,他引:1  
以纳米TiO2粉末为喷涂原料, 采用大气等离子体喷涂技术在医用钛合金上制备氧化钛涂层. 利用酸和碱溶液对氧化钛涂层表面进行生物活化处理, 体外模拟体液浸泡实验考察涂层的生物活性. 采用XRD、SEM、FTIR、EDS等测试技术对改性前后氧化钛涂层的生物活性进行表征. 结果表明: 氧化钛涂层和钛合金基体的结合强度较高, 其值高达40MPa, 涂层的耐模拟体液腐蚀性优于钛合金. 酸和碱溶液表面改性后的氧化钛涂层经模拟体液浸泡可在其表面生成含有碳酸根的羟基磷灰石(类骨磷灰石), 显示良好的生物活性.  相似文献   

11.
Titanium alloy (Ti6A14V) substrates, having the ability of biomimetic calcium phosphate-based materials, especially hydroxyapatite deposition in a simulated body fluid (SBF) means of chemical treatment (alkaline treatment) and subsequent heat treatment, was studied. The effects of alkaline treatment time, concentration and heat treatment temperature on the formation of calcium phosphate (carbonate-hydroxyapatite) on Ti6A14V surface were examined. For this purpose, the metallic substrates were treated in 0, 5 and 10 M NaOH solutions at a temperature of 60 or 80°C for 1 and 3 days. Subsequently the substrate was heat-treated at 500, 600 and 700°C for 1 h for consolidation of the sodium titanate hydrogel layer. Finally, they were soaked in SBF for 1 and 3 days. The substrate surfaces were characterized by the techniques commonly used for bulk material such as scanning electron microscopy (SEM) and thin film X-ray diffraction (TF-XRD). With regard to the SEM and TF-XRD results, the optimum process consists of 3 days soaking in 5 M NaOH in 80°C and subsequent heat treatment at 600°C for 1h. It is worth mentioning that the results showed that the apatite formed within 3 days on the specimen surfaces, however, there was no sign of apatite formation in the control samples (without alkaline and heat treatment) which was treated for up to 3 days immersion in SBF.  相似文献   

12.
通过仿生法在硅橡胶表面制备磷灰石薄膜的研究   总被引:2,自引:0,他引:2  
韦明  王欣宇  王友法  安江峰  焦国豪  杨艾玲 《功能材料》2007,38(7):1187-1189,1193
用CaCl2的乙醇溶液和K2HPO4溶液对硅橡胶进行预处理,将处理过的硅橡胶分别浸渍于模拟体液和钙磷饱和溶液中来制备磷灰石薄膜.利用薄膜X射线衍射、红外吸收光谱和扫描电子显微镜对形成的薄膜进行了表征.结果表明,分别在模拟体液中7d和在钙磷饱和溶液中5d后,硅橡胶表面形成了一层磷灰石薄膜;在模拟体液中的薄膜表面呈网状并分布有许多球状晶粒,在钙磷饱和溶液中的薄膜为结晶良好的片状晶体.  相似文献   

13.
This study investigated the hydroxyapatite (HA) coating on metal implants in order to enhance their bioactive properties. In this study, HA coatings were formed on the surfaces of commercially pure titanium (c.p. Ti) and Ti–7.5Mo which were acid-etched and subsequently alkali-treated before samples were soaked in simulated body fluid (SBF). Specimens of c.p. Ti and Ti–7.5Mo were etched in either H3PO4 or HCl, and subsequently treated in NaOH. The surfaces of acid-etched c.p. Ti showed a porous structure, whereas those of acid-etched Ti–7.5Mo showed some grinding marks, but no porosity. After subsequent alkali treatment in NaOH, the surfaces of both the c.p. Ti and Ti–7.5Mo substrates exhibited microporous network structures. The specimens were then immersed in SBF at 37 °C for 28 days. Apatite began to deposit on acid-etched and NaOH-treated Ti–7.5Mo within 1 day after immersion in the SBF. After 28 days of immersion in the SBF, a dense and uniform layer was produced on the surfaces of all samples. The HA formation rate was the highest for HCl and NaOH-pretreated samples, and the results of EDS and XRD showed that much more intensive peaks of HA appear on the specimens of HCl and NaOH-treated Ti–7.5Mo than on any other sample. Thus, this method of apatite coating Ti–7.5Mo appears to be promising for artificial bone substitutes or other hard tissue replacement materials with heavy load-bearing applications due to their desirable combination of bioactivity, low elastic modulus, and low processing costs.  相似文献   

14.
There are two objectives of this work. The first objective is to study the hydrolysis behavior of monetite cements formed in the presence and absence of the chitosan in cell culture media (α-MEM) and simulated body fluid (SBF) solutions at 37°C. During hydrolysis, monetite transformed to carbonated apatite. Therefore, the second objective is to examine how addition of chitosan affects on the formation of carbonated apatite phases. The changes in the phase structure of monetite after hydrolysis reactions were characterized using XRD, FTIR and SEM. Pure monetite and monetite/chitosan composite were soaked in α-MEM and SBF solution for 4 and 7 days. In α-MEM solution, the monetite particles started to transform into carbonated apatite with a slow rate. However, in SBF, the rate of monetite transformation to carbonated apatite was more rapid. The presence of the chitosan had no significant effect on the precipitation of carbonated apatite on the monetite particles.  相似文献   

15.
A dense, uniform and highly biologically active bone-like apatite layer can be formed in arbitrary thickness on any kind and shape of solid substance by the following biomimetic method at normal temperature and pressure: first, a substrate is set in contact with particles of CaO-SiO2-based glass soaked in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. Second, the substrate is soaked in another solution with ion concentrations 1.5 times those of SBF (1.5 SBF). In the present study, organic polymer substrates were treated with 1 m HCl solution, then subjected to the above mentioned biomimetic process. The induction periods for the apatite nucleation on polyethyleneterephthalate, polymethylmethacrylate, polyamide 6 and polyethersulfone substrates were reduced from 24 to 12 h with the HCl treatment. The adhesive strength of the formed apatite layer to the polyethyleneterephthalate, polymethylmethacrylate and polyamide 6 substrates were increased from 3.5 to 7.0 MPa from 1.1 to 2.8 MPa and from 0.6 to 3.1 MPa, respectively, with the HCl treatment. It is supposed that highly polar carboxyl group formed by the HCl hydrolysis reaction of ester group in polyethyleneterephthalate and polymethylmethacrylate or amide group in polyamide 6 increased the affinity of the substrates with a silicate ion to decrease the induction period, and also increased the affinity of the substrate with the apatite to increase the adhesive strength. The apatite-organic polymer composites thus obtained are expected to be useful as bone-repairing materials as well as soft-tissue-repairing materials.  相似文献   

16.
The titanium oxide films were fabricated on titanium metal by e-beam deposition technique in various oxygen partial pressures in order to investigate the effects of oxygen content in titanium oxide film on the bioactivity of titanium implant. The nano-sized titanium oxide particles were observed on the surface of specimens. Raman spectra showed that titanium oxide films deposited by e-beam evaporator had oxygen deficient TiO2 structure. The oxygen content in oxide films was calculated from the high resolution XPS spectra of Ti 2p. The densities of HA particles formed on the sample surfaces after immersion test in SBF became higher as the contents of oxygen in titanium oxide films increased. We concluded that the degree of hydroxyl group formation in SBF depended on the stoichiometry of TiO2, which enhanced the bioactivity of titanium.  相似文献   

17.
Biomedical titanium metals subjected to gas under precisely regulated oxygen partial pressures (PO2) from 10−18 to 105 Pa at 973 K for 1 h were soaked in a simulated body fluid (SBF), whose ion concentrations were nearly equal to those of human blood plasma, at 36.5°C for up to 7 days. The effect of oxygen partial pressures on apatite formation was assessed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) measurements. After heating, the weight of the oxide layer (mainly TiO2) formed on the titanium metal was found to increase with increased oxygen partial pressure. Nitrogen (N)-doped TiO2 (Interstitial N) was formed under a PO2 of 10−14 Pa. At lower PO2 (10−18 Pa), only a titanium nitride layer (TiN and Ti2N) was formed. After soaking in SBF, apatite was detected on heat-treated titanium metal samples. The most apatite was formed, based on the growth rate calculated from the apatite coverage ratio, on the titanium metal heated under a PO2 of 10−14 Pa, followed by the sample heated under a PO2 of 10 and 104 Pa (in N2). The titanium metal heated under a PO2 of 105 Pa (in O2) experienced far less apatite formation than the former three titanium samples. Similarly, very little weight change was observed for the titanium metal heated under a PO2 of 10−18 Pa (in N2). During the experimental observation period (5 days, 36.5°C, SBF), the following relationship held: The growth rate of apatite decreased in the order PO2 of 10−14 Pa > PO2 of 10 Pa ≥ PO2 of 104 Pa > PO2 of 105 Pa > > PO2 of 10−18 Pa. These results suggest that N-doped TiO2 (Interstitial N) strongly induces apatite formation but samples coated only with titanium nitride do not. Thus, controlling the formation of N-doped TiO2 is expected to improve the bioactivity of biomedical titanium metal.  相似文献   

18.
We report a new method for the synthesis of titanium oxide (TiO2) nanotubes. When anatase-phase- or rutile-phase-containing TiO2 was treated with an aqueous solution of 5–10 M NaOH for 20 h at 110 °C and then with HCl aqueous solution and distilled water, needle-shaped TiO2 products were obtained (diameter ≈ 8 nm, length ≈ 100 nm). The needle-shaped products are nanotubes with inner diameters of approximately 5 nm and outer diameters of approximately 8 nm. The formation mechanism of titania nanotubes is discussed in terms of the detailed observation of the products by transmission electron microscopy: the crystalline raw material is first converted to an amorphous product through alkali treatment, and subsequently, titania nanotubes are formed after treatment with distilled water and HCl aqueous solution.  相似文献   

19.
Optimising the bioactivity of alkaline-treated titanium alloy   总被引:3,自引:0,他引:3  
A layer of sodium titanate hydrogel on titanium alloy (Ti6Al4V) induces apatite formation in simulated body fluid (SBF). This paper seeks to determine the parameters of alkaline-treated and subsequent heat treatment which lead to the most rapid formation of apatite. Specimens were soaked in 3, 5, 10 or 15 M solutions of NaOH at temperatures of 60 or 80 °C for 1, 3 or 7 days. It was found that the optimum treatment for the Ti6Al4V alloy was a 3-day soak in 5 M NaOH solution at 80 °C. Specimens treated under these optimum conditions were subsequently heat-treated at 500, 600, and 700 °C for 1 h so as to consolidate the sodium titanate hydrogel layer and improve its bonding to the substrate. Treatment at 600 °C resulted in the best bonding and the optimum rate of apatite formation. On soaking in simulated body fluid (SBF), apatite formed within 3 days, as compared to the 7-day formation, which was the best rate previously reported. The acceleration in the rate of apatite formation is significant, as it should allow for earlier load bearing of prostheses following implantation.  相似文献   

20.
A titania containing calcium and phosphate with rough and porous structure was prepared by microarc oxidation. The in vitro bioactivity was examined by immersing the samples into the simulated body fluid (SBF). And the mechanism was also discussed. The results show that only 3 days of immersion in SBF, apatite was formed on the surface, and after 6 days, nearly all the surface covered by apatite. This indicates that the layer can induce the formation of apatite in simulated body fluid. It is analyzed that the key factors of the apatite formation are the hydrolysis of the CaTiO3 and special structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号