首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
This paper proposes an analytical model for line (1D) and point contacts (2D), based upon the Ertel’s hypothesis to predict the evolution of film thickness in steady-state and transient conditions in elastohydrodynamic lubrication. This theoretical approach, applied to a velocity ramp at constant deceleration, is perfectly supported by experimental results in terms of film thickness distribution during the deceleration process and in terms of central film thickness at the vanishing of the entrainment velocity. This work emphasizes the role of the transport effects of the lubricant at the instantaneous entrainment velocity on the time and length scales at which the film thickness disturbances induced by the deceleration process occur until the complete halting of the surfaces.  相似文献   

2.
应用光干涉方法,在自制的光弹流试验机上分别对纯滚动条件下点接触和线接触形成的弹流油膜进行变卷吸速度实验,并进行油膜测量。结果表明,在卷吸速度为零时都有封油现象的出现。随着卷吸速度的增加,油膜厚度增加,点接触形成的弹流油膜具有典型的马蹄形特征,线接触形成的弹流油膜在接触区端部有类似点接触的马蹄形收缩。要达到同样的最大赫兹接触压力,施加在线接触实验上的载荷要比施加在点接触实验上的载荷大40倍左右。  相似文献   

3.
A plane elastohydrodynamic problem for a radial sliding bearing with a thin liner under reciprocating motion under a constant load is considered. It has been shown that at the moment of time when the velocity becomes equal to zero the thickness of the lubricating film exceeds zero and that it continues to decrease during a period of time after changing the direction of rotation of the shaft. Film thickness and pressure distributions at various moments in time, as well as time dependences of the eccentricity and the minimum film thickness along the spatial coordinate, are presented for various values of the dimensionless parameter, which depends on the period of reciprocating motion. It has been shown that the smallest value of film thickness over the entire period of reciprocating motion increases with shortening period of reciprocating motion.  相似文献   

4.
Film thickness prediction plays an important role in evaluating the performance and durability of machine elements under elastohydrodynamic lubrication (EHL). However, current formulae may not be appropriate for general conditions occurring in real contacts. This study investigates the effect of different lubricant entrainment velocity angles on film thickness distribution. For this purpose, a steady-state isothermal EHL model is used under a wide range of parameter sets including varying sum velocity, contact pressure, and sum velocity angle. Considerable differences in the trend of the central film thickness with respect to the lubricant entrainment velocity angle for low and high loaded contacts are shown. The results are compared with experimental measurements by means of an optical ball-on-disc tribometer and a twin-disc machine using capacitance method. Good agreement between numerical results and experimental measurements was found.  相似文献   

5.
Microoscillation is a typical case of transient motion, which occurs in many machine elements, including rolling or sliding element bearings, cams, and gears. Wear is easy to occur on the surface of such elements, particularly at the end point of the stroke, where the surfaces are momentarily static. In the present work, an experimental investigation is conducted to explore the grease film behavior of point contact lubrication during microoscillation in the case of pure rolling or pure sliding. The technique of relative optical interference intensity was used to monitor the variation of the grease film thickness and the motion of the grease in the contact area through analyzing the captured interferograms. Experimental results indicate that a crescent-shaped grease film can form along the motion direction in the contact area under microoscillation. The grease film is formed in the inlet region, and the film thickness remains while moving in the Hertzian contact area. In the case of pure rolling, the crescent-shaped grease film and the initial entrapped grease film are carried by a tow effect of moving interfaces in the contact area. However, in the case of pure sliding, there are relative motions in the sliding direction at the two interfaces of the grease/ball and the grease/disk in the Hertzian contact area. The shape of the entrapped grease remains almost unchanged while moving in the Hertzian contact area. During the repetition of microoscillations, the crescent-shaped grease film thickness drops gradually.  相似文献   

6.
The film formation mechanism of lithium complex grease under starved condition was proposed based on the analysis of the relationship between grease reservoir and the finger-shaped lubricant along the rolling track using a laboratory built ball-on-disc test rig. Film thicknesses with rolling time at different slide/roll ratios were measured and discussed in detail. Experimental results showed that starvation occurred soon after the operation under pure rolling condition. In contrast, the contact remained fully flooded under slide–roll condition. The measurement of grease fingers proved that slide/roll ratio contributed to replenishing the contact by transferring more grease to the vicinity of the contact to form a lager lubricant reservoir. The volume of grease fingers, the inlet lubricant supply and the film thickness at different slide/roll ratios were found to be in good agreement.  相似文献   

7.
将机械急停时滚动轴承、齿轮等的弹流润滑油膜的渐变过程简化为从稳恒状态突然转化为恒载荷纯挤压状态,然后随时间的推移挤压效应逐渐消失的过程,建立了椭圆接触瞬态弹流润滑模型。假设润滑油为牛顿流体,在等温条件下用多重网格技术进行了动态数值求解,讨论了急停前卷吸速度分别沿椭圆接触区的长轴和短轴方向时,不同参数条件下的残留弹流润滑膜的压力和膜厚随时间的变化规律。数值计算结果表明,急停后润滑油会逐渐被挤出接触区,因此残留油膜只能保持很短的时间;较高的Hertz接触压力会通过增加润滑油粘度而延长残余油膜的维持时间,但不能根本上改变上述变化趋势,卷吸速度的方向也不能改变上述变化趋势。  相似文献   

8.
采用分子动力学模拟方法建立光滑和粗糙2种固体壁面结构,研究季戊四醇四酯润滑剂在不同压力、薄膜厚度下,在恒定剪切速度和温度下的薄膜润滑行为。分析壁面间润滑薄膜的密度分布,以及剪切过程中润滑剂的速度分布。输出固体壁面在x向和z向的力学响应,并计算摩擦因数。结果表明:表面纳米结构降低了润滑薄膜的厚度,减弱了润滑薄膜分层现象;当润滑薄膜厚度较大时,V形纳米沟槽有助于减小薄膜润滑系统的摩擦因数;润滑薄膜厚度较小时,V形纳米沟槽表面润滑状态容易从流体润滑转变到边界润滑状态,摩擦因数增大。  相似文献   

9.
P. M. Cann 《摩擦学汇刊》2013,56(3):698-704
The lubrication mechanisms of a grease in a rolling-element bearing has been studied through the measurement of film thickness in a rolling point contact. To simulate bearing conditions the contact runs under fully starved conditions; there is no attempt to maintain bulk flow of the grease into the inlet using an external supply. In consequence the film thickness drops off rapidly as the contact progressively starves. After a few minutes rolling (at constant speed) an equilibrium film thickness is attained which has two components: a residual film (hR) comprised of degraded grease thickener and a hydrodynamic component (hEHD) due to the liquid phase from the grease. The hydrodynamic contribution represents a balance between lubricant lost from the contact and replenishment from the grease close to the track. The ability of the grease to replenish the rolling track has been inferred from measurements of lubricant reflow around the static contact. These results are discussed in light of current starvation and grease lubrication models.  相似文献   

10.
This paper presents the results of a transient analysis of elastohydrodynamic lubrication (EHL) of two parallel cylinders in line contact with a non-Newtonian lubricant under oscillatory motion. Effects of the transverse harmonic surface roughness are also investigated in the numerical simulation. The time-dependent Reynolds equation uses a power law model for viscosity. The simultaneous system of modified Reynolds equation and elasticity equation with initial conditions was solved using the multigrid, multilevel method with full approximation technique. The film thickness and the pressure profiles were determined for smooth and rough surfaces in the oscillatory EHL conjunctions, and the film thickness predictions were verified experimentally.

For an increase in the applied load on the cylinders or a decrease in the lubricant viscosity, there is a reduction in the minimum film thickness, as expected. The predicted film thickness for smooth surfaces is slightly higher than the film thickness obtained experimentally, owing primarily to cavitation that occurred in the experiments. The lubricant film under oscillatory motion becomes very thin near the ends of the contact when the velocity goes to zero as the motion direction changes, but a squeeze film effect keeps the fluid film thickness from decreasing to zero. This is especially true for surfaces of low elastic modulus. Harmonic surface roughness and the viscosity and power law index of the non-Newtonian lubricant all have significant effects on the film thickness and pressure profile between the cylinders under oscillatory motion.  相似文献   

11.
Transient elastohydrodynamic (EHD) lubrication conditions occur in the contacts of many machine elements, such as gears, cams, and reciprocating devices, as a result of their working cycles. These conditions also occur in rolling‐element bearings at the onset or cessation of motion. The aspect of film thickness in elastohydrodynamically lubricated contacts subjected to a very rapid change in entrainment speed has not received much attention from researchers, probably because it is seen as less problematic than a sudden fall of the entrainment speed, which theoretically can lead to film failure. For a sudden stop, however, it has been shown previously that the lubricant forms an entrapment, which is able to protect the contact in many cases when the motion resumes. In this paper, EHD film behaviour under sudden acceleration is investigated; the study covers three cases ‐ starting from zero film, starting from an entrapped film, and starting from a continuous, steady film.  相似文献   

12.
This article is focused on the effects of the angle between lubricant entrainment velocity and sliding velocity on elastohydrodynamic film thickness distribution. Thin-film colorimetric interferometry was used to evaluate the film thickness distribution in smooth glass–steel contacts to provide basic data on the effects of the slide–roll ratio and the direction of sliding with respect to entrainment velocity. It was observed that as the sliding perpendicular to the entrainment velocity increased, the overall film thickness was reduced and asymmetry of the film profile with respect to the direction of the entrainment velocity increased. The asymmetry of the film profile with respect to the direction of the entrainment velocity increased with the entrainment speed or the overall film thickness. When the speed of the glass disk was larger than that of the steel ball, a dimple was formed even if there was a difference in direction between the entrainment and sliding velocities. A part of the dimple was exhausted from the elastohydrodynamic lubrication (EHL) conjunction as the angle between the entrainment and sliding velocities approached 90°.  相似文献   

13.
池京银 《润滑与密封》2023,48(12):101-107
开发一种基于推力轴承结构的润滑膜厚与摩擦因数测量系统。该测量系统在较低速度下可实现膜厚与摩擦因数的同步测量,在较高速度下可通过保持架固定和玻璃盘回转模式实现润滑油膜测量,通过保持架自由回转和玻璃盘固定模式实现摩擦因数的测量。通过测量不同载荷下的润滑油膜厚度随速度变化曲线,以及与单点接触的测量结果进行定量对比,验证了该测量系统的可靠性。测量得到的摩擦因数曲线表明了滚动体打滑现象的存在。该测量装置为润滑剂特性和滚动轴承润滑特性研究提供了一种评价方法。  相似文献   

14.
采用多光束干涉测量技术,在自制光弹流实验机上进行了椭圆接触弹流润滑油膜形状的实验测量,观察了椭圆接触区短轴与卷吸方向之间的夹角θ、速度、施加载荷等对油膜形状的影响。结果表明:夹角θ较小时,油膜厚度整体上更大,接触区较窄,入口区油膜更陡峭;低速时,夹角及载荷基本不影响膜厚;高速、轻载时,夹角θ对膜厚影响更显著;载荷及夹角越大,动压油膜越难建立。  相似文献   

15.
Three different lubricating greases and their bleed and base oils were compared in terms of film thickness in a ball-on-disc test rig through optical interferometry. The theoretical values calculated according to Hamrock's equation are in close agreement with the base oil film thickness measurements, which validates the selected experimental methodology.The grease and bleed oil film thickness under fully flooded lubrication conditions presented quite similar behaviour and levels. Therefore, the grease film thickness under full film conditions might be predicted using their bleed oil properties, namely the viscosity and pressure-viscosity coefficient. The base and bleed oil lubricant parameter LP are proportional to the measured film thickness.A relationship between grease and the corresponding bleed oil film thickness was evidenced.  相似文献   

16.
卷吸速度为任意方向的椭圆接触弹流润滑分析   总被引:3,自引:2,他引:3  
以往的点接触弹流润滑研究往往局限于分析卷吸速度方向与接触椭圆短轴相重合的工况。但在实际工程问题中,有时卷吸速率方向与接触椭圆长轴相重合,有时卷吸速度方向与接触椭圆的对称轴成一夹角,针对这一问题,本文提出了一种独特的解决方法,压力和膜厚分析分别采用多重网格和多重网格积分法,无论卷吸速度的方向如何,总让X轴与速度方向一致,而Y方向速度永远等于0。这样任意卷吸速度方向的工况和卷吸速度与接触椭圆短轴相重合  相似文献   

17.
基于FRAP的微间隙润滑油膜流速测量方法   总被引:1,自引:0,他引:1  
薄油膜润滑广泛存在于各类精密机械与微机电系统中。微纳米间隙内的润滑油流动是影响薄膜润滑承载力的重要因素,但目前薄润滑油膜的流速测量仍然缺少有效手段。本文基于荧光漂白恢复显微技术和漂白区域形状演化过程的成像分析,建立了油膜流速测量系统,可以对微米间隙润滑油膜的速度分布进行原位测量。利用建立的系统获得了厚度为8μm时聚丁烯PB450润滑油膜的库埃特流速分布。重建的荧光漂白强度分布曲线和实验测量结果的皮尔森相关系数大于0.95,且流速分布符合已有润滑理论,证明了测量结果的可靠性。  相似文献   

18.
冲击现象广泛存在于工业链、滚动轴承等机械零部件中,严重的情况下会引起冲击磨损。为探究冲击载荷对脂润滑条件下成膜性能的影响,在点接触光干涉弹流试验台上对锂基脂润滑条件下的膜厚演化进行冲击试验研究。试验时钢球和玻璃盘的初始间隙设置为0,冲击载荷按三角波往复变化。结果发现:在第一个冲击周期内,接触区存在大块的增稠剂纤维团,该纤维团造成接触区内的脂膜凹陷;随着冲击周期的增加,接触区内的大块增稠剂纤维团消失,脂膜厚度逐渐降低,润滑状态进入到薄膜润滑状态,最后发生了表面损伤;在任何一个冲击周期内,中心膜厚和最小膜厚大部分的时间都呈现固定值;中心膜厚随着冲击周期数的增加而减小,最小膜厚在最初的100个周期内变化很小,此后逐渐降低,最后为0。  相似文献   

19.
直齿轮传动非牛顿流体瞬态弹流润滑研究   总被引:4,自引:0,他引:4  
卢立新  蔡莹 《润滑与密封》2005,(6):36-38,41
综合考虑润滑流体的非牛顿特性以及齿轮传动的瞬态效应,采用Bair-Winer粘塑模型推导了非牛顿流体雷诺方程,建立了非牛顿流体瞬态弹流润滑模型;进行直齿轮传动非牛顿流体弹流润滑数值分析,获得了齿轮传动沿啮合线的油膜压力、油膜形状以及摩擦因数的分布。结果表明:在非牛顿流体工况下,油膜厚度、油膜压力以及轮齿表面摩擦因数均有所降低,因此在齿轮弹流润滑研究中应考虑流体的非牛顿特性的影响。  相似文献   

20.
P. M. Cann 《摩擦学汇刊》2013,56(4):867-873
Many grease lubricated roller bearings operate in the starved elastohydrodynamic (EHL) regime where there is a limited supply of lubricant to the contact (1). Under these conditions the film thickness drops to a fraction of the fully flooded value (2) and, thus, it is difficult to predict lubrication performance, or bearing life, from conventional EHL models. In this regime film thickness depends on the ability of the grease to replenish the track rather than the usual EHL considerations. The conventional view of grease lubrication is that base oil bleeds from the bulk reservoir close to the track, replenishing the inlet and forming a fluid EHL film (3). Resupply, under starved conditions, will thus depend on both operating conditions and grease parameters. The aim of this paper is to evaluate the influence of these parameters on starved lubrication in a rolling contact. Starved film thickness has been measured for a series of greases and the results have been compared to the fully flooded values. These show that the degree of starvation increases with increasing rolling speed, base oil viscosity and thickener content but decreases at higher temperatures. In many cases an increase in absolute film thickness is obtained when moving from high viscosity base oil to a low one, this result is the reverse of normally accepted EHL rules. Taking the fully flooded film thickness as a guide to lubrication performance is therefore not valid as grease film thickness in the starved regime is determined by local replenishment rather than bulk rheological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号