首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
煤与瓦斯突出模拟试验台的改进及应用   总被引:2,自引:0,他引:2  
 为确保更好的煤与瓦斯突出模拟试验效果,针对原研制的模拟试验台存在的不足,对其突出模具及其配套的煤试件成型装置进行改进和重新研制。利用环向和面密封等全方位密封技术可使突出模具在2 MPa瓦斯压力下达到较长时间的良好密封效果;依靠3组直径不同的圆形突出口装配,可在不更换突出模具的条件下进行不同突出口径的煤与瓦斯突出模拟试验,经济实用;凭借布置的温度和瓦斯压力传感器与配套的试验控制软件连接,可较方便地实时监测突出过程中煤体内温度及其瓦斯压力的变化规律;研制的独立煤试件成型装置可准确实施预定的成型压力,且操作过程较为灵活、方便。利用改进后的煤与瓦斯突出模拟试验台开展的模拟试验表明,在瓦斯压力、突出口径方面均存在一个使煤与瓦斯突出发生与否的阈值,高于此阈值时,瓦斯压力或突出口径愈大则突出强度亦愈大,且瓦斯压力作为突出发生的动力同时也对突出煤粉有一定的粉碎作用。此外,煤与瓦斯突出过程中煤体的温度变化也印证了煤吸附瓦斯放热和解吸瓦斯吸热这一物理现象。  相似文献   

2.
 煤与瓦斯突出实质是开采扰动下含瓦斯煤体在三维应力作用下突然发生的力学失稳破坏,严重威胁着煤矿安全生产。以典型高瓦斯矿井-阜新孙家湾煤矿突出煤粉压制而成的型煤为研究对象,利用自主研制的煤与瓦斯突出仪,进行煤层埋深-600 m,在轴压、围压、孔隙压三维应力条件下煤与瓦斯突出模拟试验,以探求煤与瓦斯突出规律。试验再现煤与瓦斯突出孔洞口小腔大、突出煤粉分布具有分选性等突出特征现象,验证煤与瓦斯突出模拟仪的可靠性。通过对试验结果分析,划分6个突出区域,得到以下新认识:突出煤粉质量分布具有区域性特征,存在煤粉质量极值区和均值区。突出试验现象表现为瓦斯–煤气固两相射流特征,为引入射流理论研究煤与瓦斯突出机制提供新思路。突出煤粉量极大值区域位于突出中远区,是瓦斯–煤气固两相射流突出破坏能量的耗散阶段区域。不同粒径突出煤粉分布具有明显的波动分布特性。煤粉质量极大值区以较小粒径煤粉为主,煤粉质量极小值区以较大粒径煤粉为主,突出末端区域以较小粒径煤粉为主。指出高压瓦斯是突出发生的动力源和煤体粉碎粉化的破坏源,煤与瓦斯突出能量释放具有波动性特征。试验结论对煤与瓦斯突出的机制认识具有重要参考价值。  相似文献   

3.
瓦斯压力对突出煤瓦斯渗流影响试验研究   总被引:10,自引:5,他引:5  
 以典型煤与瓦斯突出矿井松藻煤电集团打通一矿7#突出煤层制备的型煤试件为研究对象,利用自行研制的三轴渗透仪,进行固定轴压和围压情况下的变瓦斯压力突出煤瓦斯渗透试验。试验结果表明:在轴压和围压固定的情况下,突出煤样的瓦斯渗透速度随着瓦斯压力的增大而增大。突出煤样瓦斯渗透速度随着瓦斯压力的增加,呈幂函数规律变化。随着瓦斯压力的增加,突出煤样两端的瓦斯压力梯度增大率会逐渐减小,最终趋近于零。而突出煤样的瓦斯渗透速度增加率则随着瓦斯压力的增大而减小,最终趋近于一恒定值附近。研究成果对提高突出矿井瓦斯抽采率有重要意义。  相似文献   

4.
煤与瓦斯突出模拟试验研究   总被引:4,自引:2,他引:2  
 以自行研制开发的大型煤与瓦斯突出模拟试验系统为手段,对其可靠性进行试验验证,并对不同含水率煤体发生煤与瓦斯突出时突出强度变化规律进行模拟试验研究。结果表明:研制开发的大型煤与瓦斯突出模拟试验系统的模拟试验结果与煤与瓦斯突出事故实际较吻合,且系统可靠性较好;随着含水率的升高,煤体发生煤与瓦斯突出的可能性减小,煤与瓦斯突出强度也呈减小趋势;在试验煤体含水率情况下,含水率与煤与瓦斯突出强度呈二次曲线关系。  相似文献   

5.
煤样粒径对煤与瓦斯突出影响的试验研究   总被引:3,自引:0,他引:3  
 煤与瓦斯突出是发生在煤矿井下生产中的一种极其复杂的地质动力现象,严重威胁着煤矿安全生产。以由不同煤粉粒径压制而成的型煤为研究对象,采用偏光分析软件、应变控制式三轴仪,对型煤物理力学性质进行研究。并在此基础之上,应用煤与瓦斯突出模拟试验台进行不同粒径条件下的煤与瓦斯突出模拟试验,以探索研究煤粉粒径对煤与瓦斯突出特性的影响规律。研究结果表明,煤样粒径影响型煤的物理力学性质进而对煤与瓦斯突出产生明显的影响效果。具体表现在:煤样粒径越小,型煤表面孔隙结构的分形维数越大,其对瓦斯的吸附特性越好,同时其力学强度也越高;突出模拟试验表明,煤样粒径越小,煤与瓦斯突出发生的强度越大,吸附过程中吸附的瓦斯量也越大,但是煤与瓦斯突出过程中的破碎效果则越不明显。  相似文献   

6.
含瓦斯突出煤三轴压缩下力学性质试验研究   总被引:3,自引:2,他引:1  
以典型煤与瓦斯突出矿井松藻煤电集团打通一矿7#突出煤层制备的型煤试件为研究对象,利用岛津AG-250伺服材料试验机和自行研制的三轴渗透仪,对不同外界应力条件下含瓦斯突出煤的力学特性进行试验研究.结果表明:瓦斯压力固定的情况下,围压对含瓦斯煤的力学特性起到强化和改善的作用.随着围压的增加,突出煤样的三轴抗压强度、弹性模量和峰值应变均呈线性单调增加;围压大小一定情况下,瓦斯压力对含瓦斯煤的力学特性起到弱化的作用.随着瓦斯压力的增加,突出煤样的三轴抗压强度和弹性模量分别呈线性和对函数形式单调递减,而峰值应变则呈线性单调增加;有效应力对含瓦斯突出煤的力学性质具有强化和改善的作用,随着有效应力的增加,含瓦斯突出煤的弹性模量、三轴抗压强度和峰值应变均单调增加.研究成果对采动影响下煤层瓦斯抽放和煤与瓦斯突出防治及预测具有重要意义.  相似文献   

7.
煤与瓦斯突出多尺度预测研究   总被引:4,自引:0,他引:4  
采用分形几何学手段,从煤田、井田、采区等3个尺度上,研究了地质构造的分形特征,并将构造分维数与瓦斯突出危险性程度作了对比分析。结果表明,在不同尺度上,地质构造均具有分形特征,构造分维数与瓦斯突出危险性间存在正相关关系,为煤与瓦斯突出分形预测研究提供了初步的理论基础。  相似文献   

8.
含瓦斯煤渗透率理论分析与试验研究   总被引:4,自引:2,他引:4  
 从孔隙率的基本定义出发,充分考虑煤基质吸附瓦斯膨胀、热弹性膨胀、受瓦斯压力压缩对其本体变形的影响,首先给出煤体孔隙率与体积应变、温度及瓦斯压力之间的函数关系,再以Kozeny-Carman方程为桥梁,建立扩容前压缩条件下综合考虑有效应力、温度及瓦斯压力共同影响的渗透率动态演化模型。相关试验数据验证表明,所建立的渗透率理论模型具有良好的适用性,能反映出一定条件下的渗透率演化趋势。试验研究表明:煤体孔隙发育程度与渗透率具有较好的一致性,渗透率随孔隙发育程度的增高而增大;当温度和瓦斯压力一定时,渗透率随有效应力的增大而减小,并且瓦斯压力越低减小趋势越明显;有效应力和瓦斯压力一定时,渗透率随温度升高而减小,但其减小幅度基本不受有效应力变化的影响;温度和有效应力一定时,渗透率随瓦斯压力的升高呈先急剧减小而后逐渐平缓的趋势。含瓦斯煤渗透率与有效应力、温度和瓦斯压力之间关系的研究,为有温度场参与的多场耦合问题的研究提供理论基础,也为高温矿井瓦斯抽放率的提高提供技术支持。  相似文献   

9.
煤与瓦斯突出模拟试验台的研制与应用   总被引:8,自引:2,他引:8  
 为更深层次地探索煤与瓦斯突出机制,在同类突出装置的基础上自主研发了“大型煤与瓦斯突出模拟试验台”,其主要由煤与瓦斯突出模具、快速释放机构、承载框架、电流伺服加载系统、翻转机构、主机支架及附属装置组成。分析后认为该试验台具有如下功能:(1) 利用电流伺服加载系统可对突出煤样施加均布荷载和阶梯形荷载,模拟工作面前方造成突出的局部应力集中现象。(2) 可实现5种不同倾角煤层在不同地应力、不同瓦斯压力下的煤与瓦斯突出模拟试验。(3) 利用泡沫不锈钢隔离煤样与进气孔,实现了对突出煤样的“面充气”功能。(4) 通过快速释放机构,可瞬间打开突出口使突出端突然卸压。(5) 实现了煤与瓦斯突出试验的全过程回放。试验结果表明:有典型的梨形突出孔洞出现,突出的粉煤有明显分选性,且瓦斯压力越大其突出强度越大。所得试验结果与现场突出特征吻合,说明该试验台具有良好的煤与瓦斯突出试验模拟功能。  相似文献   

10.
基于模块化思路,自主研制了多功能煤与瓦斯突出模拟试验系统,由试件腔体和五大模块(加载模块、渗流模块、诱突模块、巷道模块和采集模块)组成,试件腔体尺寸φ200 mm×700 mm、密封气压10.0 MPa、轴向应力20.0 MPa,巷道内径200 mm、长10 m、透光率94%,突出口径25,50,100 mm可选,集型煤一次性成型、渗透性测试和突出两相流可视化等多功能于一体。以煤与瓦斯突出灾害较为严重的河南龙山煤矿为工程背景,开展突出模拟试验,结果表明:(1)测试得到型煤试件渗透率为9.88×10-3μm~2,诱突过程达到毫秒级,突出启动后,高压气体裹挟煤粉持续抛向巷道,形成煤‐瓦斯两相流,突出煤粉9 540.0 g,相对突出强度47.7%;(2)突出过程中,巷道空气受压缩产生多道以正相压和负相压交替向前传播的冲击波,冲击波超压峰值在巷道中部5.5 m处达到最大,为15.41 k Pa,同时产生向后运动的稀疏波,导致试件腔体内煤层气压上升21%;(3)突出煤粉流受突出阵发性和突出煤粉解吸气体影响,出现多次再加速过程,在第二次加速后达到速度峰值42.6 m/s,冲击...  相似文献   

11.
煤与瓦斯突出是煤矿井下开采活动中较为常见的动力灾害,严重威胁着矿井安全绿色生产。鉴于现场煤与瓦斯突出的不确定性、突发性和危险性,物理模拟试验成为了研究煤与瓦斯突出机制的有效手段。通过查阅大量文献发现:(1)突出模拟试验装置由单轴向双轴、常规三轴、真三轴迭代升级,试件尺寸由小到大,数据采集由单一到多元化,各种大型多功能真三轴可视化、模块化试验系统的成功研制,为煤与瓦斯突出发生机制的定量研究提供了有效平台;(2)开展大量围绕“三要素”的煤与瓦斯突出物理模拟试验研究,探索地应力、瓦斯压力、煤体物理力学性质对突出的影响程度,通过煤层温度和两相流冲击演化反演突出强度,基本掌握突出的发动条件及致灾机制,形成了具有我国特色的煤与瓦斯突出理论体系。然而,随着我国煤矿开采深度不断增加,深部煤与瓦斯突出机制变得更加复杂。针对新形势下煤与瓦斯突出研究存在的不足,对未来的研究方向提出建议和展望,旨在完善煤与瓦斯突出机制体系,突破定性假说研究阶段,对灾害孕育、发生、发展阶段的定量条件进行探索,为现场煤与瓦斯突出预测与防治提供可靠的理论基础。  相似文献   

12.
在分析现有装置优势与不足的基础上,为实现地应力、瓦斯压力和煤体物理力学参数方便可调,基于煤与瓦斯突出综合作用假说与CSIRO模型,提出本模拟系统的设计思想和技术要求。采用模块化的设计思路研制成功煤与瓦斯突出模拟试验系统。该系统最大可施加30 MPa地应力和3 MPa气体压力,气体压力采集频率高达1 000Hz,气体压力和高速摄像同步采集实现对突出瞬态过程信息的精确记录。该系统操作便捷,单次试验速度快,大大缩短了试验周期。模拟9组含瓦斯煤的石门揭煤突出试验,试验结果表明:煤与瓦斯突出受地应力、瓦斯压力和煤岩体强度共同影响,其中煤体强度对突出起阻碍作用,对应不同煤岩体破坏状态,存在瓦斯压力动态临界值。模拟试验动力现象强烈,突出后孔洞成明显的口小腔大形态。研制的试验系统为深入分析煤与瓦斯突出机制提供了科学试验仪器。  相似文献   

13.
“三软”煤层冲击地压诱导煤与瓦斯突出力学机制研究   总被引:1,自引:0,他引:1  
 以新安煤田为工程背景,通过现场调查、测试、实验室试验、理论计算和相似条件类比,探讨“三软”煤层冲击地压作用下煤与瓦斯突出力学机制。研究结果表明,在原岩和采动应力作用下,巷道底板存在的高弹性模量夹层砂岩向上挠曲,造成煤体正常瓦斯溢出通道被封闭,煤体内部产生裂隙促使吸附瓦斯解吸为游离瓦斯,可实现煤与瓦斯突出的外部准备条件;底板高弹模夹层的破断冲击,打通被压实煤体的瓦斯溢出通道,可实现煤与瓦斯突出的外部激发条件;掘进迎头附近底板产生的105J以上量级冲击地压,其孕育和发生过程导致的迎头煤墙闭合–破裂,可诱导每立方米煤初始瓦斯膨胀能小于1.3×106 J (瓦斯压力小于0.74MPa)的煤层发生瓦斯突出或异常涌出,而每立方米煤初始瓦斯膨胀能大于1.3×106 J(瓦斯压力大于0.74MPa)的煤层,可诱导发生煤与瓦斯突出。通过对高弹性模量岩层(夹层)底板实施钻孔或爆破措施,防止底板弹性变形向上挠曲与破断冲击,可破坏此类煤与瓦斯突出准备和激发的外部条件。  相似文献   

14.
 为了进一步完善煤与瓦斯突出机制,通过对已有研究成果和煤与瓦斯突出地质结构环境的总结分析,将煤与瓦斯突出机制研究与工程结构相结合,提出煤与瓦斯突出的关键结构体模型,并对煤与瓦斯突出过程进行剖析,通过理论分析建立煤与瓦斯突出启动的力学判据Cm和能量判据Ce,形成煤与瓦斯突出关键结构体致灾理论。研究结果表明:地质构造运动形成构造煤体,营造利于突出发生的高应力环境,提供利于瓦斯保存和突出启动的地质结构环境;突出煤体具备高能瓦斯和构造煤的介质属性,是煤与瓦斯突出的基本条件,也是突出过程中能量的主要来源,关键结构体是煤与瓦斯突出得以成功启动的必要条件;依据关键结构体模型,煤与瓦斯突出分为准静载作用下的延迟突出(D-QSL)和动载作用下的瞬时突出(I-DL)2种类型;煤与瓦斯突出过程经历准备、启动、发展和终止4个阶段,突出准备阶段始于地质构造运动对煤体的改造,突出激发表现为结构2的突变失稳,隶属于突出准备阶段,突出能否成功启动决定于结构1的力–能条件;利用关键结构体模型和突出启动的力–能判据能够揭示典型煤与瓦斯突出事故的启动机制,可为煤与瓦斯突出预测与防治提供指导。  相似文献   

15.
 煤与瓦斯突出过程是地下煤矿开采中的一个很复杂的动力灾害问题。在综合收集整理国内外煤与瓦斯突出模拟研究基础上,以颗粒法为基础,建立数值模型和模拟过程,对煤与瓦斯突出过程中相关的微裂纹和位移演化、应力和速度场演化、瓦斯压力和颗粒分层刚度比等细观机制进行模拟和研究。研究结果表明:采用颗粒法模拟所得出的煤与瓦斯突出过程是一个相对很快的动力过程,发生的时间极短,煤岩体损伤主要以拉裂纹为主,剪切裂纹主要集中在瓦斯突出前端,而拉裂纹则深入到煤岩体中的更深部位;同时研究认为瓦斯压力对煤岩体损伤有很大影响,当瓦斯压力相对较小时,剪切裂纹主要在分布侵入体前端,而拉裂纹则沿着侵入煤岩体贯入一定的深度。当瓦斯压力相对较大时,剪切裂纹与拉裂纹贯入深度基本一致,且在煤岩体的损伤中,剪切裂纹比例随之增大;最后对模型中的分层刚度比与裂纹分布形态和应力分布进行了研究,当分层刚度比不相同时,其裂纹传播速度和形态都不相同。这些研究对于认识瓦斯突出机制和瓦斯突出防治提供了理论基础。  相似文献   

16.
地应力在石门揭构造软煤诱发煤与瓦斯突出中的作用   总被引:1,自引:0,他引:1  
 在基于相似模拟试验思想和地质力学模型试验新思路的基础上,在实验室搭建大型石门揭煤的煤与瓦斯突出试验平台,利用该试验平台研究石门揭构造软煤过程中煤岩应力的变化规律,同时结合数值模拟分析地应力在石门揭构造软煤诱发煤与瓦斯突出中的作用。结果表明:在石门揭煤过程中巷道前方围岩存在明显的应力集中,使煤体中积聚弹性潜能,增加煤体的瓦斯压力梯度,为突出的准备和孕育提供能量基础;发现地质构造断层附近存在明显的构造应力异常区并与由后期开挖导致的应力集中相互叠加,有利于形成自构造软煤向周围煤层深部扩展的大型突出。  相似文献   

17.
由于煤与瓦斯突出是一典型的复杂非线性动力系统,影响因素很多,如应力、煤层特征、构造等,且各影响因素相互关联,因此,采用非线性人工神经网络进行煤与瓦斯突出的模式辨识与预测是十分必要的。针对具体的不同煤层条件,建立自适应小波基神经网络激活函数模型,用于煤与瓦斯突出系统的辨识和预测,实现由网络本身自动确定神经单元的数目,避免人为因素的影响,提高辨识和预测的可靠性和智能化程度。实例分析结果表明,所建立的自适应小波基神经网络激活函数模型,辨识和预测精度高,具有重要的推广应用价值。  相似文献   

18.
煤层中高压瓦斯主要以吸附态为主,为了研究吸附瓦斯含量对煤与瓦斯突出的影响,利用吸附性依次增强的氦气、氮气、甲烷和二氧化碳模拟相同气压下吸附瓦斯含量的不同。将0.75 MPa的上述4种气体充入物理力学性质相同的型煤并充分吸附,模拟游离瓦斯含量相同、吸附瓦斯含量不同的煤体,考虑4种不同强度型煤开展16次瞬间揭露试验。试验发生9次持续时间1 s左右的突出现象,对于低强度型煤试验不吸附的氦气也发生突出现象;试验结果表明随吸附气体含量增加,型煤发生突出的风险增大,吸附气体含量越大其突出强度越大。提出吸附气体膨胀能的测定方法,根据突出能量公式计算发生突出的煤体弹性能、吸附及游离气体膨胀能等突出潜能和煤体破碎功、抛出功等突出耗能,突出潜能与突出耗能基本相等验证吸附气体膨胀能测定方法的合理性。能量分析表明参与突出过程的吸附气体膨胀能占总气体膨胀能的7.9%~32.3%,占突出潜能的6.5%~25.6%,且其占比随吸附气体含量增大而增大。研究成果为揭示、量化吸附瓦斯含量在突出中的作用提供参考和依据。  相似文献   

19.
 针对煤与瓦斯突出机制尚不明确、影响因素复杂的问题,在对煤与瓦斯突出的阶段特征和能量耗散规律分析的基础上,考虑到煤岩体应力场分布和突出孔洞特征,建立煤与瓦斯突出三维结构模型,并基于该模型引入围岩弹性潜能,并根据突出后煤体的堆积状态和断裂表面能,计算得出移动功和破碎功,从而构建突出能量条件模型和突出强度预测模型,并结合突出案例进行验证。同时在突出能量条件模型基础上,采用Morris筛选法对突出影响因素的灵敏度进行分析。研究结果表明:瓦斯内能是瓦斯突出的最主要能量来源,在突出过程中起主导作用,突出能量条件模型和强度预测模型的分析结果与实际突出案例偏差较小,可作为突出灾害的预测和分析依据;中梁山矿和化处矿的突出案例中,对于突出强度、瓦斯涌出量和突出能量,吨煤瓦斯含量为主导因素,灵敏度最大,其次是瓦斯扩散系数、瓦斯压力和孔隙率,而岩石的相关参数的灵敏度接近0。  相似文献   

20.
基于SVM的煤与瓦斯突出区域预测研究   总被引:8,自引:0,他引:8  
支持向量机是 20 世纪 90 年代中期兴起的基于结构风险最小化原理的机器学习技术,各项技术性能尤其是泛化能力具有明显优势。基于支持向量机构建了煤与瓦斯突出预测模型。首先,按 SVM 的二类划分最优分类面和样本混杂区的边界将特征空间细划为 3 个区域,由此建立了可将突出危险性划分为突出危险、突出威胁、安全 3个级别的煤与瓦斯突出的 SVM 模型。再将 SVM 的二类划分最优符号函数改为距离函数,用这个距离函数和混杂区尺寸 u1和 u2建立了突出危险性等级指标函数,在突出区侧的混杂区边界取值为 1,在非突出区侧的混杂区边界取值为-1。用此指标预测函数对潘一矿 13–1 煤层的 26 次实例突出样本和 34 个非突出样本作了分析研究,对大量参数和学习算法进行了学习和检验,获得了用于潘一矿 13–1 煤层的突出预测指标函数,结果表明用此方法可大大提高预测准确率,是一个科学可行的解决途径,具有广泛的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号