首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In dye-sensitized solar cells (DSSCs), as the excited electrons from dye molecules are injected to the conduction band of semiconductor film through the acceptor moieties, the acceptor groups have significant influences on the photovoltaic properties of the dyes. In this paper, the effects of different acceptor groups (cyanoacetic acid and rhodanine-3-acetic acid) in two phenothiazine-triphenylamine dyes (PTZ-1 and PTZ-2) on the optical, electrochemical properties and photovoltaic performances were studied. In comparison with PTZ-2, the photovoltaic performance of PTZ-1 is significantly improved by replacing rhodanine-3-acetic acid to cyanoacetic acid. The conversion efficiency of solar cell based on the PTZ-1 is increased about 110%. The lower efficiency of solar cell based on PTZ-2 is mainly because the delocalization of the excited state is broken between the 4-oxo-2-thioxothiazolidine ring and the acetic acid, which affects the electron injection from PTZ-2 to the conduction band of TiO2.  相似文献   

2.
Organic dyes with the oligohexylthiophene linkage having several donor parts, carbazole, indole, and indoline, were newly synthesized as sensitizers for dye-sensitized solar cells. The carbazole was most efficient donor moiety for DSSCs among these dyes with the oligothiophene linkage. Carbazole dyes were adsorbed with larger amount of molecules on the TiO2 film than both indole dyes and indoline dyes. Therefore, both the VOC and the electron lifetime of DSSCs with the carbazole dyes were highly observed. The decreasing of JSC of DSSCs with indole and indoline dyes also caused by the reducing the adsorption amount of dyes.  相似文献   

3.
Three near-infrared (NIR) absorbing unsymmetrical perylene diimide D-A-D type dyes containing 6-undecanoxy as donor group were utilized in dye-sensitized nanocrystalline TiO2 solar cells. Structure of the acceptor side of the molecules were improved by adding 4-[2-methyl-5-(cyanoacrylic acid)-3-thienyl]-phenyl (V), 3-carboxy-2-pyridil (VI) and 3-carboxy-2-pyrazyl (VII) moieties attached to one of the N-side of the dye. The relationship between the molecular structure of the acceptor sites of the dyes and the photovoltaic performances were discussed. Electrochemical measurements indicated that band gaps of the dyes were energetically favorable for electron injection from the excited state of the dyes to the conduction band of TiO2 nanoparticles. However, three dyes gave lower conversion efficiency on DSSC applications. Strong electron-withdrawing nature of perylene core might not permit to transfer the photo-generated electrons to the carboxyl groups anchoring to TiO2 surface, and then solar-to-electricity conversion efficiencies of the dyes were reduced.  相似文献   

4.
For high solar conversion efficiency of dye-sensitized solar cells [DSSCs], TiO2 nanofiber [TN] and Ag-doped TiO2 nanofiber [ATN] have been extended to be included in TiO2 films to increase the amount of dye loading for a higher short-circuit current. The ATN was used on affected DSSCs to increase the open circuit voltage. This process had enhanced the exit in dye molecules which were rapidly split into electrons, and the DSSCs with ATN stop the recombination of the electronic process. The conversion efficiency of TiO2 photoelectrode-based DSSCs was 4.74%; it was increased to 6.13% after adding 5 wt.% ATN into TiO2 films. The electron lifetime of DSSCs with ATN increased from 0.29 to 0.34 s and that electron recombination was reduced.  相似文献   

5.
《Dyes and Pigments》2013,96(3):743-750
The synthesis and application to dye-sensitized solar cells of two new triphenylamine-based organic dyes containing benzimidazole derivatives as secondary donors together with a simple triphenylamine derived dye for the purpose of comparison is reported. The photophysical and electrochemical properties of the dyes were investigated by UV–vis spectroscopy and cyclic voltammetry. The introduction of benzimidazole derivatives in the phenyl ring of the triphenylamine core increases the molar extinction coefficients and λmax because of the extension of the π-conjugation structures of the dyes. Overall conversion efficiencies of ∼2.5% under full sunlight (AM 1.5G, 100 mW cm−2) irradiation were obtained for DSSCs based on these new dyes, under the same conditions, the reference dye and di-tetrabutylammonium cis-bis(isothiocyanato) bis(2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium(II) (N719) gave overall conversion efficiencies of 1.23% and 5.61%, respectively. Our findings demonstrate that the introduction of benzimidazole derivatives as secondary donors in triphenylamine-based dye can improve their photovoltaic performance compared to the unsubstituted reference dye in DSSCs.  相似文献   

6.
The sensitizing properties of cyanine dyes in dye-sensitized nanocrystalline TiO2 solar cells are shown to be controlled by the character of the carboxyl functions used to attach the molecules to the surface. These tether functions affect the degree of aggregation of the subject cyanine dyes attached to TiO2 as well as the short circuit photocurrents they produce in these solar cells. Use of two carbons, acetic acid linkages, on the dye results in performance in a sensitized solar cell comparable with a control ruthenium complex, in contrast to the greatly diminished performance of dyes with longer, methylbenzoic acid linkages.  相似文献   

7.
Dye-sensitized solar cells (DSSCs) are fabricated based on double-layered composite films of TiO2 nanoparticles and hollow spheres. The photoelectric conversion performances of DSSCs based on nanoparticles/nanoparticles (PP), hollow spheres/hollow spheres (HH), hollow spheres/nanoparticles (HP), and nanoparticles/hollow spheres (PH) double-layered films are investigated, and their photo-electric conversion efficiencies are 4.33, 4.72, 4.93 and 5.28%, respectively. The enhanced performance of TiO2 nanoparticles/hollow spheres double-layered composite film solar cells can be attributed to the combined effect of following factors. The light scattering of overlayer hollow spheres enhances harvesting light of the DSSCs and the underlayer TiO2 nanoparticle layer ensures good electronic contact between film electrode and the F-doped tin oxide (FTO) glass substrate. Furthermore, the high surface areas and pore volume of TiO2 hollow spheres are respectively beneficial to adsorption of dye molecules and transfer of electrolyte solution.  相似文献   

8.
A series of new π-conjugated organic dyes (HKK-BTZ1, HKK-BTZ2, HKK-BTZ3 and HKK-BTZ4), comprising triphenylamine (TPA) moieties as the electron donor and benzothiadiazole moieties as the electron acceptor/anchoring groups, was synthesized for the use in dye-sensitized solar cells (DSSCs). TPA units are bridged to benzothiadiazole with single(S), double(D) and triple bonds(T) in different derivatives. And HKK-BTZ1 was modified by introducing alkoxy group of TPA unit, because the bulky alkoxy group is a strong donating group for the more red shift and for reducing aggregation of dyes in TiO2 film. The structure-property relationship was investigated. Under standard global AM 1.5 G illumination, a maximum photo-to-electron conversion efficiency of 7.30% was achieved with the DSSC based on dye HKK-BTZ4 (JSC = 17.9 mA/cm−2, VOC = 0.62 V, FF = 0.66), while the Ru dye N719-sensitized DSSC showed an efficiency of 7.82% with a JSC of 17.5 mA/cm−2, a VOC of 0.62 V, and a FF of 0.72.  相似文献   

9.
《Dyes and Pigments》2012,92(3):404-412
Four porphyrin dyes, incorporating multi-alkylthienyl appended porphyrins as the electron donor, the 2-cyanoacrylic acid as the electron acceptor, and different π-conjugated spacer, have been synthesized for dye-sensitized solar cells (DSSCs). All the porphyrin dyes studied in this work exhibit red-shifted and broadened electronic spectra respect to the reference PZn as expected. By the introduction of thienyl groups at the meso-positions, the energy level of Eox (excited-state oxidation potentials) is significantly shifted to the positive compared with the reference PZn, indicating a decreased HOMO–LUMO gap. The highest power conversion efficiency of the four dyes based on DSSCs reached 5.71% under AM 1.5 G irradiation.  相似文献   

10.
Efficiency of dye-sensitized solar cells [DSSCs] was enhanced by combining the use of TiO2 nanotubes [TNTs] and nanoparticles. TNTs were fabricated by a sol-gel method, and TiO2 powders were produced through an alkali hydrothermal transformation. DSSCs were constructed using TNTs and TiO2 nanoparticles at various weight percentages. TNTs and TiO2 nanoparticles were coated onto FTO glass by the screen printing method. The DSSCs were fabricated using ruthenium(II) (N-719) and electrolyte (I3/I3 -) dyes. The crystalline structure and morphology were characterized by X-ray diffraction and using a scanning electron microscope. The absorption spectra were measured using an UV-Vis spectrometer. The incident photocurrent conversion efficiency was measured using a solar simulator (100 mW/cm2). The DSSCs based on TNT/TiO2 nanoparticle hybrids showed better photovoltaic performance than cells made purely of TiO2 nanoparticles.  相似文献   

11.
Novel organic dyes (IDB and ISB dyes), which contain 5-phenyl-iminodibenzyl (IDB) and 5-phenyl-iminostilbene (ISB) as electron donors and a cyanoacrylic acid moiety as an electron acceptor and an anchoring group, connected with a thiophene as a π-conjugated system, have been synthesized and used as the sensitizers for dye-sensitized solar cells (DSSCs). The photophysical and electrochemical properties of the dyes were investigated by absorption spectrometry, cyclic voltammetry and density functional theory calculations. As demonstrated, the IDB and ISB unit exhibited stronger electron-donating ability and broader absorption spectra when coated onto TiO2. The DSSC based on ISB-2 consisting of ISB unit produced 5.83% of η (Jsc = 13.14 mA cm−2, Voc = 0.64 V, and ff = 0.68) under 100 mW cm−2 simulated AM 1.5 G solar irradiation.  相似文献   

12.
We have studied the performance of dye-sensitized solar cells by employing natural dye “anthocyanins” extracted from the tomato slurry as a sensitizer for the TiO2/CuO photoanode. The extracts were anchored on TiO2/CuO films deposited on an ITO substrate which was used as a photoanode. The dye adsorbed TiO2/CuO films electrode, the copper plate as a counter electrode, and iodolyte as an electrolyte were assembled into DSSCs. The conversion efficiency of the DSSCs was found to be 2.96% with a VOC of 0.615 V, JSC of 6.6 mA/cm2, and an FF of 0.73. This work highlights the use of contribution of the tomato slurry as a natural sensitizer to enhance the efficiency of DSSCs.  相似文献   

13.
Four porphyrin dyes, incorporating multi-alkylthienyl appended porphyrins as the electron donor, the 2-cyanoacrylic acid as the electron acceptor, and different π-conjugated spacer, have been synthesized for dye-sensitized solar cells (DSSCs). All the porphyrin dyes studied in this work exhibit red-shifted and broadened electronic spectra respect to the reference PZn as expected. By the introduction of thienyl groups at the meso-positions, the energy level of Eox (excited-state oxidation potentials) is significantly shifted to the positive compared with the reference PZn, indicating a decreased HOMO-LUMO gap. The highest power conversion efficiency of the four dyes based on DSSCs reached 5.71% under AM 1.5 G irradiation.  相似文献   

14.
The design and synthesis of an asymmetrical zinc phthalocyanine sensitizer modified with a catechol anchoring group is reported. The performance of this sensitizer was evaluated in a dye-sensitized solar cell. A strong interaction between the catechol dye and TiO2 (with the formation of a five-membered charge-transfer complex) was evidenced by a strong shift in the Q-band of the ZnPc-Cat from 680 nm in solution to 750 nm on TiO2, along with an appreciable absorption tail extending to ∼1000 nm. The fabricated solar cell containing the phthalocyanine sensitizer showed relatively high light-to-electron conversion efficiency (η = 0.92%), considering that few catechol dyes exceed η = 0.7% in dye-sensitized solar cells. Values of Isc = 2.53 mA cm−2 and Voc = 540 mV were obtained, referring to a standard N719 cell (η = 6.46%). A comparison of zinc phthalocyanine sensitizers bearing different anchoring groups affirmed the superiority of carboxylate groups relative to those bearing catechol groups in terms of cell performance.  相似文献   

15.
This study employed a solution-based method to prepare a 3-D hybrid material comprising graphene and acid-treated multi-walled carbon nanotubes (MWCNTs). The adsorption of MWCNTs on graphene reduces the ππ interaction between graphene sheets resulting from steric hindrance, providing a subsequent reduction in aggregation. Optimal proportions of MWCNTs to graphene (2:1) enabled the even distribution of individual MWCNTs deposited on the surface of the graphene. The hybrid 3-D material was incorporated within a TiO2 matrix and used as a working electrode in dye-sensitized solar cells (DSSCs). The hybrid material provides a number of advantages over electrodes formed of either MWCNTs or graphene alone, including a greater degree of dye adsorption and lower levels of charge recombination. In this study, DSSCs incorporating 3-D structured hybrid materials demonstrated a conversion efficiency of 6.11%, which is 31% higher than that of conventional TiO2-based devices.  相似文献   

16.
We prepared highly ordered titanium dioxide nanotube arrays (TNAs) by anodizing Ti foils in F containing electrolyte. The thickness and dye loading amount of TNAs were 26 μm and 1.06 × 10−7 mol cm−2, respectively. TiO2 nanoparticles (TNPs) were electrophoretically deposited on the inner wall of nanotube to produce coated nanotube arrays (TNAP). The dye loading was increased to 1.56 × 10−7 mol cm−2, and the electron transport rate improved. TNAs and TNAP were sensitized with ruthenium dye N3 to yield dye-sensitized TiO2 nanotube solar cells. The power conversion efficiency of TNA-based dye-sensitized solar cells (DSSCs) was 4.28%, whereas the efficiency of TNAP-based DSSCs increased to 6.28% when illuminated from the counter electrode. The increase of power conversion efficiency of TNAP-based DSSCs is ascribed to the increased surface area of TNAs and the faster electron transport rate.  相似文献   

17.
We have designed and synthesized novel zinc porphyrin dyes which have a D-π-A system based on porphyrin derivatives containing a triphenylamine (TPA) electron-donating group and a phenyl carboxyl anchoring group substituted at the meso position of the porphyrin ring, yielding the push-pull porphyrins as the most efficient green dye for dye-sensitized solar cell (DSSC) applications. The synthesis and characterization of a novel D-π-A system based on zinc-porphyrin derivatives have been investigated through their photophysical and photoelectrochemical studies. A large red-shift of the absorption maxima due to introduction of the TPA moiety at the meso position of the porphyrin ring was expected in the D-π-A porphyrins, but the absorption maxima of HKK-Por dyes were a little red-shifted in contrast to Zn[5,-10,15-triphenyl-20-(4-carboxylphenyl)-porphyrin], due to the tilted structure between TPA and the porphyrin unit. Under the photovoltaic performance measurement, the maximum incident photon-to-current conversion efficiency (IPCE) value of the DSSC based on HKK-Por 5 was slightly higher than the efficiencies of the DSSCs based on other HKK-Por dyes due to the introduction of the alkoxy group into the TPA moiety at the meso position of the porphyrin ring. A maximum photon-to-electron conversion efficiency of 3.36% was achieved with the DSSC based on HKK-Por 5 dye (JSC = 9.04 mA/cm2, VOC = 0.57 V, FF = 0.66) under AM1.5 irradiation (100 m Wcm−2).  相似文献   

18.
In the field of photovoltaic energy conversion, hybrid inorganic/organic devices represent promising alternatives to standard photovoltaic systems in terms of exploiting the specific features of both organic semiconductors and inorganic nanomaterials. Two main categories of hybrid solar cells coexist today, both of which make much use of metal oxide nanostructures based on titanium dioxide (TiO2) and zinc oxide (ZnO) as electron transporters. These metal oxides are cheap to synthesise, are non‐toxic, are biocompatible and have suitable charge transport properties, all these features being necessary to demonstrate highly efficient solar cells at low cost. Historically, the first hybrid approach developed was the dye‐sensitized solar cell (DSSC) concept based on a nanostructured porous metal oxide electrode sensitized by a molecular dye. In particular, solid‐state hybrid DSSCs, which reduce the complexity of cell assembly, demonstrate very promising performance today. The second hybrid approach exploits the bulk heterojunction (BHJ) concept, where conjugated polymer/metal oxide interfaces are used to generate photocurrent. In this context, we review the recent progress and new concepts in the field of hybrid solid‐state DSSC and BHJ solar cells based on TiO2 and ZnO nanostructures, incorporating dyes and conjugated polymers. We point out the specificities in common hybrid device structures and give an overview on new concepts, which couple and exploit the main advantages of both DSSC and BHJ approaches. In particular, we show that there is a trend of convergence between both DSSC and BHJ approaches into mixed concepts at the borderline which may allow in the near future the development of hybrid devices for competitive photovoltaic energy conversion. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
Nanostructured porous zinc oxide electrodes for use in dye-sensitized solar cells (DSSCs) were coated with thin niobium oxide layers by using sol–gel transformation of niobium pentaethoxide in air. Coating solutions were prepared by mixing niobium pentaethoxide and ethanol. A dip-coating technique was adopted at a low withdrawal speed of 100 μm s−1. The coated electrodes were then heat-treated at temperatures between 400 and 600 °C. The presence of niobium in the coated electrodes was confirmed by X-ray photoelectron spectroscopy. As expected, the niobium oxide layers worked as an energy barrier between the ZnO electrode and electrolyte. Open-circuit voltage (VOC) of the cells using the coated electrodes was then enhanced up to 0.768 V, which was attributable to the suppression of the recombination of photogenerated electrons with oxidized species in electrolytes. An additional benefit of the coating was that grain growth of ZnO particles in the electrodes was hindered and short-circuit photocurrent density (JSC) was kept relatively high due to large amounts of adsorbed dye. An overall light-to-electricity conversion efficiency was increased to a maximum of 5.19%, indicating that the proper coating technique was the key for improving the performance of ZnO-based DSSCs.  相似文献   

20.
The synthesis of new organic hole transporting materials (HTMs) based on 3,6‐disubstituted 9H‐carbazole‐3,6‐diamine,N,N,N′,N′‐tetraphenyl‐9‐(4‐methoxyphenyl) derivatives and their applications in solid state dye sensitizer solar cells (DSSCs) are described. The effect of the methoxy group localized on the para position of the diphenylamine moieties on the thermal, electronic and electrochemical properties and photovoltaic performance is discussed. In solid state DSSCs, utilization of the aforementioned HTMs in combination with the dye D102 (TiO2/D102/HTM/Au) shows a positive influence of the methoxy group on the photovoltaic conversion efficiency compared with unsubstituted diphenylamine grafted groups. A study on the concentration of the HTM is also carried out and shows an optimal concentration around 200 mg mL?1. Without further optimization, the best device gives a power conversion efficiency of 1.75% under AM 1.5 solar irradiation (100 mW cm?2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号