共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对电力负荷变化规律和影响因素的分析,提出了一种新的短期电力负荷预测模型。首先利用混沌理论将杂乱无章的历史数据进行相空间重构,找出其中的潜在规律,并粗选预测参考点;然后利用蚁群优化算法,考虑距离因素和相点演化的相关性因素,对粗选的预测参考点作进一步精选,提高其质量;最后采用GM(1,1)灰色模型得到预测日的负荷数据。实际算例验证了提出的方法具有较好的预测精度。 相似文献
2.
基于混沌蚁群算法的微网环保经济调度 总被引:6,自引:0,他引:6
随着化石能源的日益减少,以及日益增长的负荷需求,必须充分利用各地丰富的清洁和可再生能源,因此分布式发电技术备受关注。针对微网中太阳能光伏发电、风力发电等分布式发电的特点,考虑到不同类型、容量的分布式发电所消耗的燃料、效率、运行和维护费用、温室气体的排放量不同,以及太阳能光伏发电、风力发电的特殊性,提出了一种综合考虑发电成本与排放成本的微网环保经济调度的数学模型。针对发电成本与排放成本的不同权重,采用混沌蚁群优化算法,通过算例验证了数学模型与优化算法的正确性与有效性。 相似文献
3.
为了降低燃煤锅炉飞灰中的碳质量分数,利用支持向回归(SVR)建立了大型四角切圆燃烧锅炉的碳质量分数模型.利用大样本量的热态实炉碳质量分数实验数据对模型进行了训练和验证,利用变尺度混沌蚁群算法结合该模型对锅炉的运行参数进行优化.计算结果表明:SVR模型具有很好的泛化性和预测精度;变尺度蚁群算法能实现全局寻优,降低飞灰中的碳质量分数,而且具有很高的稳定性和鲁棒性,其快速的收敛寻优能力也非常适于在线应用;支持向量机与变尺度蚁群算法的结合使用可以有效地实现燃烧优化,降低飞灰中的碳质量分数是控制锅炉飞灰中碳质量分数的有效工具. 相似文献
4.
为了快速、准确地获得多峰函数的全局峰值以及局部峰值,在给出Henon混沌映射技术的基础上,提出了一种混沌蚁群算法的多峰函数优化方法.该方法将复杂函数的数值解所构成的数字字符转化为蚁群搜索路径上的城市分布网,并构建同函数变量个数相同的蚁群进行全局搜索求解,采用混沌映射技术自适应更新蚁群优化路径上的信息素量.采用低维及高维Benchmark测试函数验证该优化方法的求解性能,并同引力搜索算法以及其他文献方法作求解对比.通过对比可知,该方法在低维多峰函数优化时,其搜索效率均2倍高于其他文献方法.对于维数高于5维的高维函数,该方法的优化效率同其他文献方法基本相同,但在获得全局解及局部解的能力以及所求解的精度均远高于其他文献方法. 相似文献
5.
在研究了基本蚁群聚类模型、信息熵以及几个经典的聚类分析算法的基础上,针对传统K—means算法的不足,首先提出了一种基于信息素的k-means改进算法,该算法以基于信息素的转移概率为判断标准来进行聚类,减少了算法的参数个数,加快了聚类的进程.在深入研究了基于信息熵的LF改进算法的基础上,提出了一种蚁群聚类组合算法策略. 相似文献
6.
在HITS算法的基础上应用蚁群算法的主要思想,对网页按关键字搜索后被点击的次数进行统计,结合相关内容提出了一种新的搜索算法—基于蚁群算法的改进HITS算法.实验表明,该算法在使得返回结果中相关度较高的网页通过人们的自主选择获得了不同程度的加权,使得其在查准率及解决HITS算法的主题漂移方面都优于传统HITS算法. 相似文献
7.
在HITS算法的基础上应用蚁群算法的主要思想,对网页按关键字搜索后被点击的次数进行统计,结合相关内容提出了一种新的搜索算法—基于蚁群算法的改进HITS算法.实验表明,该算法在使得返回结果中相关度较高的网页通过人们的自主选择获得了不同程度的加权,使得其在查准率及解决HITS算法的主题漂移方面都优于传统HITS算法. 相似文献
8.
9.
基于信息熵的蚁群聚类算法是一种自组织聚类算法,具备健壮性、可视化等特点,并能生成一些新的有意义的聚类模式.基于信息素的K-means算法的K值和初始聚类中心是事先给定的,而往往两者的选择可以直接影响聚类的效果和速度(K-means算法的缺点之一).因此,在基于信息熵的蚁群聚类算法的基础上,结合基于信息素的K-means算法,提出了一种聚类组合算法. 相似文献
10.
针对蚁群算法收敛速度慢、易陷入局部极值等问题,将其与知识库结合,提出了基于知识库的动态蚁群算法.知识库包括算法知识、规则知识和案例知识,存储了定性或定量的算法参数、参数选择方法和历史数据.基于知识库和问题特性,本算法产生初始状态并动态调整参数,在运行过程中根据赌轮法选择算子并适时引入扰动,在不影响搜索过程随机性的前提下较快地收敛于全局最优值.分别用本算法和其他主流算法解决TSPLIB中的Eil51和CHN144实例,比较优化性能、时间性能和鲁棒性3个指标,结果表明本算法均有明显优势. 相似文献
11.
本文提出了一种基于蚁群系统的配电网重构算法(ACSA)[12],该算法用于减少在正常运行情况下的电能损耗的问题。结合相应的数学模型和算法,对一个典型的配电网重构的问题进行了验证。基本蚁群算法的缺点是收敛速度慢和进化停滞,本文提出了一些新的措施来克服这些缺点。 相似文献
12.
基于改进蚁群算法的物流配送路径优化 总被引:3,自引:0,他引:3
建立了带约束条件的物流配送问题的数学模型,运用蚁群算法解决物流配送路径优化问题,将遗传算法的复制、交叉和变异等遗传算子引入蚁群算法,以提高算法的收敛速度和全局搜索能力;改进了信息素的更新方式,以提高蚁群算法的自适应性,使得算法在执行过程中能根据收敛和进展情况,相应地调整信息残留程度,从而提高收敛速度或全局搜索能力;引入了一种确定性搜索方法,加快启发式搜索的收敛速度.经过多次对比实验表明,使用改进的蚁群算法优化物流配送线路,可以有效而快速地求得问题的最优解或近似最优解 相似文献
13.
路由算法的性能直接决定网络的效率及可用性,基于移动agent的路由算法可以有效地降低网络负载,较好地适应异构环境。首先介绍了建立分布式自适应路由系统的必要性,提出了用移动agent解决路由问题,讨论了改进的蚁群算法,并对今后探讨基于移动agent的分布式路由算法问题给出了进一步的工作设想。 相似文献
14.
蚁群算法 总被引:1,自引:0,他引:1
蚁群算法是一种仿生类非线性优化算法,具有并行性、正反馈性和全局极小搜索能力强等特点.蚁群算法的机理是:生物界中的蚂蚁在搜寻食物源时,能在其走过的路径上释放一种蚂蚁特有的分泌物信息素,使得一定范围内的其他蚂蚁能够觉察并影响其行为.当某些路径上走过的蚂蚁越来越多时,留下的这种信息素轨迹也越多,以至信息素强度增大,使后来蚂蚁选择该路径的概率也越高,从而更增加了该路径的信息素强度.为了将起源于离散网络路径优化的原始蚁群算法思想用于连续函数优化的地球物理反演问题,必须对有关实施细节进行改造和修正,本文基于网格划分策略的连续域蚁群算法实现了连续域大地电磁蚁群算法.通过选择蚂蚁数、信息素挥发系数等参数,利用三层K型模型和四层HA型模型进行数值试验,结果表明,蚁群算法可以稳定收敛,反演结果接近理论模型. 相似文献
15.
基于蚁群算法的知识约简 总被引:5,自引:0,他引:5
Rough集理论中知识约简是个NP-hard问题,目前已提出较多的求解方法,但是每种方法由于其自身的局限性,只适用于一定条件下的求解.蚁群算法是较新的仿生优化算法,在解决各类组合优化问题中都取得了很好的效果.其显著优点是受问题规模的影响不大,对大规模问题的求解仍能发挥较优的性能.受蚁群算法该特性的启发,提出基于蚁群算法的知识约简方法.文中具体描述了将条件集的组合方式用一图结构来表示、构建目标评价函数、算法参数的设定以及算法的具体实施步骤等.最后通过于相关文献的比较实验,验证了该方法的有效性. 相似文献
16.
本文利用蚁群算法简单、局部工作等特点,结合传感器网络的特征,分析研究了基于蚁群算法的WSN路由算法,并阐述了蚁群算法的无线传感器网络路由算法的实现和仿真设计与分析。 相似文献
17.
提出了一种考虑电网可靠性的配电网规划模型,采用前推后代迭代法进行潮流计算,利用经典的故障模式后果分析法计算电网缺电成本,基于蚁群算法提出了一种适合于配电网的优化规划方法。通过对某算例的计算和分析,验证了本文方法的有效性。 相似文献
18.
针对移动Ad Hoc网络,提出了一种可以可控制蚁群规模的自适应蚁群路由算法,通过在网络节点配置蚂蚁数目控制表来控制"网络蚂蚁"的数目。该算法能提高蚁群算法的自适应性,自动调节网络的负载平衡。网络仿真试验结果表明,该算法具有良好的收敛性和求解效果。 相似文献
19.
20.
提出了一种考虑电网可靠性的配电网规划模型,采用前推后代迭代法进行潮流计算,利用经典的故障模式后果分析法计算电网缺电成本,基于蚁群算法提出了一种适合于配电网的优化规划方法。通过对某算例的计算和分析,验证了本文方法的有效性。 相似文献