首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the decomposition of formic, oxalic and maleic acids by O3, O3/catalyst, and O3/H2O2. The catalytic effect of Co2+, Ni2+, Cu2+, Mn2+, Zn2+, Cr3+, and Fe2+ ions is investigated. The results showed that—Co2+ and Mn2+ have the highest catalytic activity for the decomposition of oxalic acid while the catalytic effect of the studied ions is insignificant on the rate of decomposition of formic acid. Maleic acid decomposes by ozone into formic acid and glyoxylic acid, which subsequently oxidizes to oxalic acid. Though the studied ions have no effect on the decomposition of maleic acid, they have a significant effect on the produced oxalic and glyoxylic acids. In the presence of Cu2+ ions glyoxylic acid is mainly transformed into formic acid and traces of oxalic acid. In such case, a complete decomposition of maleic acid and its degradation products is achieved within 45 min. The results also show that combining H2O2 with O3 results in an increase in the rate of decomposition of oxalic acid. However, O3/H2O2 system is less active than O3/Co2+ or O3/Mn2+.  相似文献   

2.
The article describes the synthesis and crystal structure of the Mn(II) complex with 2,6-diacetylpyridine bis(Girard-T hydrazone), (H2dap(GT)2)2+, of the formula [Mn(H2dap(GT)2)(NCS)2](NCS)2·MeOH. The complex has a pentagonal-bipyramidal coordination geometry, with pentadentate N3O2 ligand in the equatorial plane and two isothiocyanato groups in the axial positions. Both the ligand and the complex are characterized by their FT-IR spectra and thermal data.  相似文献   

3.
Aminoalkyl celluloses (AmACs) were prepared from 6-chlorodeoxycellulose and aliphatic diamines H2N(CH2)mNH2 (m = 2, 4, 6, 8). Their adsorption and desorption of divalent heavy metal ions such as Cu2+, Mn2+, Co2+, Ni2+ and their mixtures were also investigated in detail. Adsorption of metal ions on AmACs was remarkably affected by the pH of the solution, the metal ion and its initial concentration, and also the number of methylene units in the diamines. No adsorption of metal ions occurred on AmACs in strongly acidic solutions. However, metal ions were adsorbed rapidly on AmACs from weakly acidic solutions and the amount of adsorption increased with increasing pH. The effectiveness of AmACs as adsorbents decreased with increasing length of the methylene moiety, and AmACs from ethylenediamine (m = 2) was most effective. The adsorption of metal ions on AmACs was in the order Cu2+ > Ni2+ > Co2+ > Mn2+. Accordingly, their behavior followed the Irving-Williams series and Cu2+ ions were preferentially adsorbed from solutions containing metal ion mixtures. The adsorbed ions were easily desorbed from the AmACs by stirring in 0.1 M HCl.  相似文献   

4.
Résumé On montre, en étudiant la réduction électrochimique de l'oxygène sur les manganites de nickel dopés en cuivre, Ni1-x Cu x Mn2O4, que lélectrocatalyse se produit par adsorption sur des sites actifs constitués par des ions Mn4+ associés, en sites octaédriques, à des ions Mn3+.
It is demonstrated through the example of the electrochemical reduction of oxygen on nickel manganites doped with copper, Ni1-x Cu x Mn2O4, that the electrocatalysis occurs through adsorption on active sites formed by Mn4+ ions associated, in octahedral sites, with Mn3+ ions.
  相似文献   

5.
《Ceramics International》2023,49(10):15700-15709
The solid-state reaction method was used to develop a series of Na2Ca1-x-yCexMnyP2O7 phosphors in an H2–N2 environment. The crystal structure of the pyrophosphate host, valence state of dopants (Ce, Mn), emission behavior of dopants, energy transfer mechanism, and thermal quenching behavior were thoroughly examined. Doping with Ce3+ and Mn2+ ions enhanced the photoluminescence characteristics of Na2Ca1-x-yCexMnyP2O7 while having negligible effect on the host's phase purity. Under 365 nm UV light irradiation, the addition of Ce3+ ion in the Na2CaP2O7 host revealed an asymmetric band with the typical blue emission around 415 nm and a shoulder around 455 nm. To obtain white light, Mn2+ ion was supplementarily substituted to the present system. When the Mn2+ ions concentration was elevated in the Na2CaP2O7 host, the emission intensity of 560 nm peak corresponding to Mn2+ transition enhanced significantly at the cost of Ce3+ emission of 415 nm. The systematic decrease of Ce3+ emission intensity and corresponding increase in the Mn2+ intensity with the increase in Mn2+ concentration indicated the possibility of effective energy transfer from Ce3+ to Mn2+ ions. The obtained results indicated that energy transfer from the Ce3+ to Mn2+ ions governed by dipole-quadrupole interaction. Because of the efficient energy transfer, the blue emission from Ce3+ and the orange red emission of Mn2+ provide white light from a single host along with high value of activation energy and low thermal quenching behaviour make the present phosphors to be suitable for high-power LEDs.  相似文献   

6.
It was discovered experimentally that heteropolymolybdophosphoric acids (HPA) with Keggin and Dawson structure are inactive for H2O2-decomposition, while their salts (Fe3+, Cu2+, Co2+ and Mn2+) all possess more activity. It could be concluded that the active species is the countercation of these kinds of heteropolymolybdates. The molybdenum ions in the polyanions are not active. If the molybdenum ions in the polyanions of these acids are substituted partly by vanadium ion (HPA-n), then not only does the catalytic activity increase regularly with the number of vanadium ions substituted (n) but the kinetic curve is also different from that of the salt, characterized by an S-shape, indicating the formation of an active intermediate as a result of the reaction between the polyanion of HPA-n and the substrate.  相似文献   

7.
Several novel oxidation removal processes of elemental mercury (Hg0) from flue gas using combined Fe2+/Mn2+ and heat activated peroxymonosulfate (PMS)/H2O2 solutions in a bubbling reactor were proposed. The operating parameters (e.g., PMS/H2O2 concentration, Fe2+/Mn2+ concentration, solution pH, activation temperature, and Hg0/NO/SO2/O2/CO2 concentration), mechanism and mass transfer-reaction kinetics of Hg0 removal were investigated. The results show that heat and Fe2+/Mn2+ have significant synergistic effect for activating PMS and PMS/H2O2 to produce free radicals to oxidize Hg0. Hg0 removal is strongly affected by PMS/H2O2 concentration, Fe2+/Mn2+ concentration, activation temperature, and solution pH. · and ·OH produced from combined heat and Fe2+/Mn2+ activated PMS/H2O2 play a leading role in Hg0 removal. Under optimized experimental conditions, Hg0 removal efficiencies reach 100, 94.9, 66.9, and 58.9% in heat/Fe2+/PMS/H2O2, heat/Mn2+/PMS/H2O2, heat/Fe2+/PMS, and heat/Mn2+/PMS systems, respectively. Hg0 removal processes in four systems belong to fast reaction and were controlled by mass transfer under optimized experimental conditions. © 2018 American Institute of Chemical Engineers AIChE J, 65: 161–174, 2019  相似文献   

8.
Novolac resin was modified with 3‐aminopropyltrimthoxysilane to obtain phenol‐formaldehyde‐aminopropylsiloxane resin (PF‐APS). Fourier transformation infra‐red spectra, thermogravimetric analysis, elemental analysis, and pH‐metric titration were used to characterize PF‐APS. Its chemical formula was suggested to be C14H12.49N0.1O2Si0.1. The resin shows high experimental metal ions uptake capacity within short time of equilibration. The metal capacity was determined by atomic absorption spectrometry to be 0.787 mEq Cu/g. Maximum separation efficiencies of Cu2+, Cr3+, and Ni2+ from aqueous solutions on PF‐APS were at pH 8.0 and time of stirring 60 min; 94.0%, 90.8%, 83.2%, respectively. No significant interference from the background ions Na+, Cl?, and was observed on the separation process. The heavy metal ions were eluted using 0.01 mol L?1 EDTA at 65°C releasing >94% of the separated metal ions. The method of separation was applied successfully to remove the heavy metal ions Cu2+, Cr3+, and Ni2+ from electroplating wastewater from Dekirnis, Dakahlia Governorate, Egypt. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40993.  相似文献   

9.
The efficiency of catalytic ozonation with homogeneous (containing dissolved ions of Fe2+, Mn2+, Cu2+, Ni2+, Co2+, V5+, Cr3+, Mo6+) and heterogeneous (MnO2, Ni2O3, Fe2O3, CuO, Al2O3, CoO, V2O5, Cr2O3, MoO3, TiO2) catalysts and non-accompanied ozonation was compared for degradation of m-dinitrobenzene (m-DNB). Several transition metals in homogeneous and heterogeneous form improved significantly the ozone performance for degradation of m-DNB. This improvement was found to be due to supplementary formation of reactive species (hydroxyl radicals) and better ozone utilization. The effects observed were found to be strongly dependent on the treatment conditions.  相似文献   

10.
Two supramolecular isomers of MnII thiophenedicarboxylate coordination polymers, namely, [Mn2(tdc)2(dmf)2]n (1) and [Mn3(tdc)3(dmf)3]n (2) (H2tdc = 2,5-thiophenedicarboxylic acid, dmf = N,N-dimethylformamide), were synthesized with solvent-induced assembly method and the antiferromagnetic interactions between the MnII ions in their solid phase were measured.  相似文献   

11.
We report on the synthesis and reactivity of a polymer-supported o-phenylenediamine hydrochloride ligand, PS-PDHC, using macroporous 6% crosslinked polystyrene-divinylbenzene beads. The PS-PDHC ligand was found to be highly selective to AuCl4 ions in strongly acidic solutions in the presence of other precious metal ions, PdCl42−, PtCl42−, RhCl63−, and RuCl52− (selectivity values: 2.5, Au/Pd; 7.5, Au/Pt; 7, Au/Rh; 2.2, Au/Ru) as well as other transition metal ions, Fe 3+, Cr3+, CU2+, Nit+, and Mn2+. The sorption capacity, selectivity, kinetics of removal and recovery, and solution isotherms have been determined for AuCl4 ions in competition with the above-mentioned metal ions. The relative ease of formation of the anionic complex in 0.5 M HCI, AuCl4 was thought to be the primary reason for its selective ability to bind to the PS-PDHC ligand by an anion-exchange mechanism. Therefore, the effect of the HCI concentration on the kinetics of AuCl4 ion removal from solution was also investigated to clearly show that raising the pH from 0 to 5 caused a dramatic decrease in rate. The AuCl4 ion can be recovered quantitatively from the PS-PDHC beads using a 5% thiourea solution in 0.1 M HCl, allowing the polymer-supported ligand to be reused.  相似文献   

12.
The aim of this research was to prepare magnesium ferrite (MgFe2O4) magnetic nanoparticles and to investigate their sorption characteristics towards Mn2+, Co2+, Ni2+, Cu2+ ions in aqueous solution. MgFe2O4 was synthesized by glycine-nitrate combustion method and was characterized by low crystallinity with crystallite size of 8.2?nm, particle aggregates of 13–25?nm, BET surface area of 14?m2/g and pore size of 8.0?nm. Sorption properties of MgFe2O4 towards Mn2+, Co2+, Ni2+, Cu2+ ions were studied using one-component model solutions and found to be dependent on metal ions concentration, contact time, pH and conditions of regeneration experiment. The highest sorption capacity of MgFe2O4 was detected towards Co2+ (2.30?mmol?g1) and Mn2+ (1.56?mmol?g?1) and the lowest towards Ni2+ (0.89?mmol?g?1) and Cu2+ (0.46?mmol?g?1). It was observed that sorption equilibrium occurs very quickly within 20–60?min. The pHzpc of sorbent was calculated to be 6.58. At studied pH interval (3.0–7.0) the sorption capacity of MgFe2O4 was not significantly affected. Regeneration study showed that the metal loaded sorbent could be regenerated by aqueous solution of 10?3 M MgCl2 at pH 6.0 within 120?min of contact time. Regeneration test suggested that MgFe2O4 magnetic sorbent can be efficiently used at least for four adsorption-desorption cycles. The high sorption properties and kinetics of toxic metal ion sorption indicates good prospects of developed sorbent in practice for wastewater treatment.  相似文献   

13.
The oxidation-reduction thermodynamics for the manganese(III), -(IV), and -(II) ions, and their various complexes, are reviewed for both aqueous and aprotic media. In aqueous solutions the reduction potential for the manganese(III)/(II) couple has values that range from +1.51 V vs. NHE (hydrate at pH 0) to −0.95 V (glucarate complex at pH 13.5). The Mn(IV)/(III) couple has values that range from +1.0 V (solid MnIVO3 at pH 0) to −0.04 V (tris gluconate complex at pH 13.5). With anhydrous media the propensity for the Mn(III) ion to disproportionate to solid MnIVO2 and Mn(II) ion is avoided. For aprotic systems the range of redox potentials for various manganese complexes is from +2.01 V and +1.30 for the Mn(IV)/(III) and Mn(III)/(II) couples (bis terpyridyl tri-N-oxide complex in MeCN), respectively, to −0.96 V for the Mn(IV)/(III) couple (tris 3,5,-di-tert-butylcatecholate complex in Me2SO). The redox reactions between manganese complexes and dioxygen species (O2, O2, and H2O2) also are reviewed.  相似文献   

14.
《Ceramics International》2016,42(15):16626-16632
A series of Ce3+ doped and Ce3+/Mn2+ co-doped calcium zirconium silicate CaZrSi2O7 (CZS) phosphors have been synthesized via conventional high temperature solid state reactions. The luminescence properties, energy transfer between Ce3+ and Mn2+ have been investigated systematically. Under 320 nm excitation, the phosphor CZS: 0.05Ce3+ exhibit strong blue emission ranging from 330 nm to 500 nm, attributed to the spin-allowed 5d-4f transitions of Ce3+ ions. There are two different emission centers of Ce3+ ions, Ce3+(I) and Ce3+(II). The emission spectra of Ce3+, Mn2+ co-doped phosphors shows a broad emission around 550 nm corresponding to the 4T1(4G)-6A1(6S) spin-forbidden transition of Mn2+. The energy transfer between Ce3+ and Mn2+ is detected and the transfer efficiency of Ce3+(II) to Mn2+ is faster than that of Ce3+(I) to Mn2+. The resonant type is identified via dipole-dipole mechanism. Additionally, a blue-shift emission of Ce3+ and a red-shift emission of Mn2+ have been observed following the increase of Mn2+ content in relation to the energy transfer. Thermal quenching has been investigated and the emission spectra show a blue-shift with the temperature increases, which have been discussed in details. CZS: 0.05Ce3+, yMn2+ phosphors can be tuned from blue to white and even to yellow by adjusting the Mn2+ content. All the results indicate that CZS: Ce3+, Mn2+ phosphor have a potential application for near-UV LEDs.  相似文献   

15.
In this work, the luminescent properties of Sb3+/Mn2+ codoped 60P2O5–40MgO glass are presented. White light photoluminescence combining blue and orange‐red light was observed under ultraviolet light excitation. The emission spectra showed that the blue emission intensity of Sb3+ decreased significantly whereas the red emission intensity of Mn2+ increased with the increasing concentration of Mn2+ ions. Meanwhile, by maintaining the concentration of MnO (2.0 mol%) and increasing concentration of Sb2O3, both the blue emission and red emission were enhanced remarkably. The energy transfer from Sb3+ to Mn2+ ions via the dipole–quadrupole interaction was confirmed.  相似文献   

16.
Three types of di- and trimethyltin(IV) polymers [Me2Sn(C9H4N2O4)]n · 4H2O 1, [(Me3Sn)2(C9H4N2O4)]n · H2O 2 and [(Me3Sn)2(C9H4N2O4)]n · CH3OH 3 have been synthesized by the reaction of trimethyltin chloride with benzimidazole-5,6-dicarboxylic acid under three different experimental conditions. All the complexes were characterized by elemental analysis, IR, NMR (1H, 13C, 119Sn) spectroscopy and X-ray crystallography diffraction analysis. The structure analyses reveal that complex 1 has a 1D helical chain in which benzimidazole-5,6-dicarboxylic acid act as a tetradentate (O,O-chelation) ligand coordinating to dimethyltin (IV) ions, two water molecules take part in the coordination giving seven-coordinated tin centers in the component. Complex 2 and 3 are 2D and 3D corrugated polymers in which the deprotoned acid as tetradentate ligand affords by three oxygen atoms and a nitrogen atom.  相似文献   

17.
A sandwich-like 2D infinite framework of {[Cd(pbbm)2(SO3FcSO3)]·(CH3OH)2·(H2O)6} n (1) with nanosized porous structure [Fc(SO3)2Na2 = ferrocene-1,1′-disulphonate, pbbm = 1,1′-(1,3-propylene)-bis-1H-benzimidazole] was prepared by combining d 10 Cd2+ ions with highly conjugated pbbm and disodium ferrocene-1,1′-disulfonate. Experimental results show that 1 could serve as a new fluorescent probe for the detection of many divalent metal ions in water, such as Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+ and Pb2+, and trace organic solvents, including acetone, toluene, methylene chloride, ether, tetrahydrofuran, and methanol. The main product was very different from previous chemosensory materials that only identify one or two metal ions. The powdery multipurpose chemosensory materials proposed here could also sequester dangerous heavy metal ions, especially Pb2+. A computational study of ferrocene-1,1′-disulfonate and 1 gave insight into the process of ion exchange and sorption. This study introduces a promising new field of fluorescent chemosensors based on nanoporous coordination polymers with free functional groups.  相似文献   

18.
Mn-doped β-Ga2O3 (GMO) films with room-temperature ferromagnetism (RTFM) are synthesized by polymer-assisted deposition, and the effects of annealing atmosphere (air or pure O2 gas) on their structures and physical properties are investigated. The characterizations show that the concentrations of vacancy defects and Mn dopants in various valence states and lattice constants of the samples are all modulated by the annealing atmosphere. Notably, the samples annealed in air (GMO–air) exhibit a saturation magnetization as strong as 170% times that of the samples annealed in pure O2 gas (GMO–O2), which can be quantitatively explained by oxygen vacancy (VO)-controlled ferromagnetism due to bound magnetic polarons established between delocalized hydrogenic electrons of VOs and local magnetic moments of Mn2+, Mn3+, and Mn4+ ions in the samples. Our results provide insights into mechanism-based tuning of RTFM in Ga2O3 and may be useful for design, fabrication, and application of related spintronic materials.  相似文献   

19.
A conventional free‐radical initiating process was used to prepare graft copolymers from acrylonitrile (AN) with corn‐cob cellulose with ceric ammonium nitrate (CAN) as an initiator. The optimum grafting was achieved with corn‐cob cellulose (anhydroglucose unit, AGU), mineral acid (H2SO4), CAN, and AN at concentrations of 0.133, 0.081, 0.0145, and 1.056 mol/L, respectively. Furthermore, the nitrile functional groups of the grafted copolymers were converted to amidoxime ligands with hydroxylamine under basic conditions of pH 11 with 4 h of stirring at 70°C. The purified acrylic polymer‐grafted cellulose and polyamidoxime ligand were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy analysis. The ligand showed an excellent copper binding capacity (4.14 mmol/g) with a faster rate of adsorption (average exchange rate = 7 min), and it showed a good adsorption capacity for other metal ions as well. The metal‐ion adsorption capacities of the ligand were pH‐dependent in the following order: Cu2+ > Co2+ > Mn2+ > Cr3+ > Fe3+ > Zn2+ > Ni2+. The metal‐ion removal efficiency was very high; up to 99% was removed from the aqueous media at a low concentration. These new polymeric chelating ligands could be used to remove aforementioned toxic metal ions from industrial wastewater. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40833.  相似文献   

20.
A mechanism for the electrodeposition of acrylic resin on aluminium is proposed, based on experimental studies of acid value, anodic gas evaluation and anodic film resistance. The mechanism can be expressed as Alf Al3+ + 3e 2Al3+ + 3H2Of Al2O3 + 6H+ 2Al3+ + 6H2Of 2Al(OH)3 + 6H+ H+ + RCOC f RCOOH. This is different from the mechanism for zinc and steel, where it is metal ions from anodic dissolution which neutralize the macro-ions and cause a deposit on the anode surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号