首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Solar-driven highly efficient photocatalytic decomposition of toxic organic contaminants using magnetically separable α-Fe2O3/ZnFe2O4/ZnO ternary hybrid nanodiscs is reported. α-Fe2O3/ZnFe2O4/ZnO ternary hybrid nanostructures were synthesized by microwave-assisted co-precipitation and simple co-precipitation methods and well characterized by XRD, micro-Raman, FESEM and UV–vis spectroscopy. FESEM micrographs revealed nanodiscs in case of microwave-assisted co-precipitation whereas nanoparticles and their aggregates were formed under co-precipitation combined with calcination. XRD and Raman studies confirmed the hybrid nature of prepared α-Fe2O3/ZnFe2O4/ZnO nanostructures. Photocatalytic performance of α-Fe2O3/ZnFe2O4/ZnO hybrid nanostructures was investigated by carrying out the photodegradation of organic dyes MB and MG under solar light illumination. The prepared α-Fe2O3/ZnFe2O4/ZnO ternary hybrid magnetic nanodiscs decomposed MB and MG dyes in only 32 and 24 min, respectively. α-Fe2O3/ZnFe2O4/ZnO hybrid nanodiscs showed excellent photocatalytic performance together with reusability and easy magnetic separation demonstrating its suitability for solar-driven photocatalytic water purification applications. In-situ scavenger studies showed ?OH radicals are the main active radicals in solar-driven photocatalysis by α-Fe2O3/ZnFe2O4/ZnO nanodiscs. The tentative mechanism of growth of α-Fe2O3/ZnFe2O4/ZnO ternary hybrid nanodiscs and the photocatalytic mechanism are discussed.  相似文献   

4.
5.
Wang  Liyin  Gui  Peng  Shen  Yun  Gong  Cairong  Xue  Gang 《Catalysis Letters》2021,151(11):3404-3416
Catalysis Letters - NixMn3?xO4 and NixMn3?xO4/T (T represents tourmaline) catalysts with a double-layer hollow structure were prepared by a rigid template method for low-temperature...  相似文献   

6.
7.
8.
A potassium and calcium co-promoted nickel catalyst (KCaNi/-Al2O3) prepared by a direct impregnation method possessed a high activity, high stability and excellent coke resistance properties in CH4 reforming with CO2. XRD, XPS and H2-TPR characterizations indicated that (i) Ca and K strengthened the interaction between Ni and -Al2O3 and promoted the formation of a unique NiAl2O4 phase on the surface of the catalyst and (ii) Ca and K increased the dispersion of Ni and retarded its sintering. Coking reactions (CH4 temperature-programmed decomposition and O2-TPO) disclosed that K reduced carbon formation via CH4 decomposition.  相似文献   

9.
In the present study, heterogeneous copper(II)–cysteine/SiO2–Al2O3 catalyst was successfully prepared by a simple adsorption method. The physical and chemical properties of Cu(II)–cysteine/SiO2–Al2O3 were investigated by X-ray diffraction, thermal gravimetric analyzer, FT–IR spectroscopy, Brunauer–Emmett–Teller, UV–Vis spectroscopy, scanning electron microscopy and atomic absorption spectrometer. The obtained composite was effectively employed as catalyst for selective oxidation of various aromatic alcohols to corresponding aldehydes in high yields using hydrogen peroxide as an oxidant under mild condition. The catalyst can be recycled over five times without significant loss of activity.  相似文献   

10.
《Ceramics International》2019,45(11):13883-13893
In this work, polypyrrole-coated ZnFe2O4 (ZnFe2O4@PPy) nanocomposites were successfully synthesized via a simple in-situ polymerization process, then evaluated as electromagnetic wave (EMW) absorbers over the 2–40 GHz frequency range. The ZnFe2O4@PPy nanocomposites exhibited excellent EMW absorption properties, including very low reflection losses (−42.31 dB at 30.24 GHz and a thickness of 2.5 mm) and a broad absorption bandwidth of 28.20 GHz (from 9.66 to 37.86 GHz). The EMW absorption properties of the ZnFe2O4@PPy nanocomposites could be adjusted by changing the PPy shell thickness and also the thickness of the absorber (1–2.5 mm). The excellent microwave absorption performance of the ZnFe2O4@PPy nanocomposites is attributable to the synergistic effects of magnetic losses (ZnFe2O4 nanoparticles), dielectric losses (ZnFe2O4 and PPy) and interfacial relaxation losses at ZnFe2O4-PPy interfaces.  相似文献   

11.
Bhogal  Sangeeta  Sharma  Gaurav  Kumar  Amit  Sharma  Shweta  Naushad  Mu.  Alam  Manawwer  Stadler  Florian J. 《Topics in Catalysis》2020,63(11-14):1272-1285
Topics in Catalysis - In the present study, Ag2O–Al2O3–ZrO2 based trimetallic oxide nanocatalyst was designed using simple microwave assisted reduction method. It was characterized...  相似文献   

12.
Pd nanoparticle-poly(2-hydroxyethyl methacrylate)/KIT-6 (Pd-PHEMA/KIT-6) composite was fabricated through in situ polymerization method and was evaluated as a novel heterogeneous catalyst in Suzuki–Miyaura cross coupling reactions of aryl halides and phenylboronic acid in an aqueous medium. The catalyst was characterized by XRD, FT-IR, UV–Vis, TG, BET, and TEM techniques. The results revealed that the supported catalyst Pd-PHEMA/KIT-6 exhibited excellent catalytic activity for the coupling of aryl iodides, aryl bromides, and aryl chlorides. This heterogeneous catalyst could be reused at least nine times without any decrease in activity.  相似文献   

13.
T. Lei  J.S. Xu  W.M. Hua  Y. Tang  Z. Gao 《Catalysis Letters》1999,61(3-4):213-218
A series of Al2O3supported SO 4 2– /ZrO2 superacid catalysts (named SZ/Al2O3) were prepared by a precipitation method and their catalytic behavior for nbutane isomerization at low temperature in the absence of H2 and at high temperature in the presence of H2 was studied in this paper. The catalytic activities of some of these catalysts were enhanced significantly at both low and high temperatures. At 250°C after 6 h on stream, the steady activity of the most active sample, 60%SZ/Al2O3, is about two times higher than that of conventional SZ. The texture properties of catalysts were studied by the methods of XRD and the adsorption of N2. Experimental evidence of IR of adsorbed pyridine indicates that the significant activity enhancements of SZ/Al2O3 catalysts are caused by the increasing of the amount of strong acid sites.  相似文献   

14.
The high conductivity Ti3C2 MXene with the unique lamellar nanostructure can effectively improve photoelectrocatalytic ability of composite as cocatalyst. In this paper, the magnetic α-Fe2O3/ZnFe2O4 heterojunctions were obtained using one-step hydrothermal synthesis. And α-Fe2O3/ZnFe2O4@Ti3C2 MXene photocatalyst can be easily obtained by ultrasonic assisted self-assembly approach for dispersing magnetic α-Fe2O3/ZnFe2O4 heterojunctions on Ti3C2 MXene surface. Due to the improving photoelectron ability, the α-Fe2O3/ZnFe2O4@Ti3C2 MXene was found to exhibit the higher photocatalytic ability than the α-Fe2O3/ZnFe2O4 heterojunctions in eliminating Rhodamine B (RhB) pollutant and toxic Cr(Ⅵ) in water. Even more important, as a magnetic composite, the 10 wt% α-Fe2O3/ZnFe2O4@Ti3C2 MXene photocatalyst exhibited the excellent reusability. The terrific photocatalytic ability is due to the numerous heterostructure interfaces, the increase of visible light harvesting and high conductivity.  相似文献   

15.
Gao  Zi  Xia  Yongde  Hua  Weiming  Miao  Changxi 《Topics in Catalysis》1998,6(1-4):101-106
The catalytic behavior of Al-promoted sulfated zirconia for n-butane isomerization at low temperature in the absence of H2 and at high temperature in the presence of H2 was studied. The addition of Al enhances the activity and stability of the catalysts for reaction at 250°C and in the presence of H2 significantly. After on stream for 120 h, the n-butane conversion of the catalyst containing 3 mol% Al2O3 keeps steadily at 88% of its equilibrium conversion and no observable trend of further deactivation has been observed. The difference in behavior of the promoted and unpromoted catalysts at low and high temperature is associated with a change of reaction mechanism from bimolecular to monomolecular. Experimental evidence is presented to show that the promoting effect of Al is different from that of the transition metals. Microcalorimetric measurements of NH3 adsorption on catalysts reveal that the remarkable activity and stability of the Al-promoted catalysts are caused by an enhancement in the number of acid sites effective for the isomerization reaction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
The improving effect of Sr in the catalytic activity of Rh for N2O decomposition has been studied under 1,000 ppm N2O/He and 1,000 ppm N2O/5% O2/He (GHSV = 10,000 h?1). Different techniques have been used for catalysts characterization: TEM, SEM-EDX, XRD, N2 adsorption at ?196 °C and in situ XPS. Sr favours the Rh dispersion and reduction under reaction conditions, and allows the low temperature removal of N2O in the presence of O2 (100% decomposition at 350 °C).  相似文献   

17.
18.
High-efficient production of hydrogen from bio-oil was performed by a novel electrochemical catalytic reforming method over the NiCuZn–Al2O3 catalyst. The influences of current on the hydrogen yield, carbon conversion and products’ distribution were investigated. Both the hydrogen yield and carbon conversion were remarkably enhanced by the current through the catalyst, reaching nearly complete conversion with a hydrogen yield of 93.5% even at low reforming temperature of 400 °C. The thermal electrons would play important roles in promoting the reforming reactions of the oxygenated-organic compounds in bio-oil, molecular dissociation and the catalyst reduction.  相似文献   

19.
An efficient and scalable one-pot synthetic method to prepare nanostructure composite of ZnFe2O4–FeFe2O4–ZnO (ZFZ) has been investigated. This method is based on thermal decomposition of iron(III) acetate and zinc acetate in monoethanolamine (MEA) as a capping agent. Moreover, thermogravimetric analysis (TG-DTG) was performed to determine the temperature at which the decomposition and oxidation of the chelating agents took place. ZFZ was immobilized on glass using doctor blade method and calcinated at different temperatures. The properties of the ZFZ nanocomposite have been examined by different techniques, such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectance (DRS). FESEM shows that nanocomposite is monocrystallines and a narrow dispersion in size of 48 nm. XRD confirms that the prepared nanocomposite is composed of franklinite, ZnFe2O4 (54%), magnetite, FeFe2O4 (8%) and wurtzite, ZnO (48%). Photocatalytic activity of ZFZ immobilized on glass was carried out by choosing an azo textile dye, Reactive Red 195 (F3B) as a model pollutant under UV irradiation with homemade photocatalytic apparatus and the results indicated that ZFZ exhibited good photocatalytic activity.  相似文献   

20.
Structural characterization, the mechanism of catalytic activity generation and the nature of active sites of a NiSO4/γ-Al2O3 catalyst for isobutene oligomerization were studied by temperature programmed reduction (TPR), X-ray diffraction (XRD), diffuse reflectance infrared fourier transformed (DRIFTS) and X-ray photoelectron spectroscopy (XPS) techniques. The TPR measurements together with the XRD data indicated that calcination of the catalyst at 500 °C did not form either nickel oxide or nickel aluminate. The presence of only one type of surface nickel species formed by the incorporation of nickel ions into the surface vacant sites of γ-alumina lattice was indicated by XPS with Ar+ ions sputtering and TPR measurements. XPS analysis of the calcined catalyst suggested that the oxidation state of nickel ions in the calcined catalyst was (+2) and after calcination the nickel ions were coordinated to relatively more basic ligands. The surface acid centers of the catalyst were found to be only Lewis type. SO4 2? ions were found to be present as a chelating bidentate ligand and enhanced the acidity of metal ( $ {\text{Al}}^{3 + } $ and/or $ {\text{Ni}}^{2 + } $ ) Lewis acid centers. The results suggested that the combined effects of the presence of the bidentate SO4 2? ligand and dehydroxylation generate coordinatively unsaturated $ {\text{Ni}}^{2 + } $ that interact with isobutene during the oligomerization reaction. The formation of lower-valent nickel ions ( $ {\text{Ni}}^{x + } ,x\; \le\; 1 $ ) was demonstrated by in situ DRIFTS using CO as a probe molecule and by XPS measurements. Formation of a binuclear bridging carbonyl complex, $ [{\text{Ni}}({\text{CO}})^{ + } ]_{2} $ suggested that some lower-valent nickel species were formed via in situ reduction by isobutene. Analysis of Ni 2p photolines indicated the appearance of a new lower-valent nickel species ( $ {\text{Ni}}^{x + } ,x \;\le\; 1 $ ) during the course of isobutene oligomerization. Hence it is plausible that lower-valent nickel species might act as the active center for the oligomerization reaction, while the SO4 2? ions enhance the acidity of the Lewis acid sites on the surface and assist in the adsorption of reactant molecules on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号