首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiNb2O7 microspheres are prepared via a microwave-assisted solvothermal method. The microwave irradiation lowers the compound formation temperature to 600°C, and highly crystalline TiNb2O7 powders are obtained upon calcination at 800°C. Morphological analysis of the sample shows uniformly distributed microspheres with a particle size of around 1 μm. The Li+-ion diffusion coefficient calculated from the electrochemical impedance result is around 1.21 × 10−13 cm2 s−1, which is 1.5 times higher than the sample obtained from the conventional solvothermal method. The TiNb2O7 sample derived from microwave yields a high discharge capacity of 299 mA h g−1 at 0.1 C, whereas the sample synthesized via the conventional solvothermal process yields only 278 mA h g−1 at 0.1 C. Excellent rate capabilities such as 220 mA h g−1 at 5 C and 180 mA h g−1 at 10 C are also observed for the microwave-assisted solvothermal sample. Moreover, the sample exhibits a large capacity retention of 95.5% after 100 discharge–charge cycles at 5 C. These results reveal the appropriateness of the microwave-assisted solvothermal process to prepare TiNb2O7 powders with superior properties for battery applications.  相似文献   

2.
王伟  刘伟  吴杨  杨慎慎 《无机盐工业》2022,54(10):87-95
锂离子电池以其便携、无记忆效应、循环寿命长等特点广泛应用于移动电子设备、电动汽车等领域。负极材料的改进是制备新型高性能锂离子电池的重要环节。具有类石墨烯结构的二硫化钼是极具发展潜力的锂离子电池用负极材料。但纯二硫化钼导电性差、充放电过程中体积膨胀率高,导致其可逆容量低、容量保持率差。复合化与纳米化是解决上述问题的有效途径。综述了近年来用于锂离子电池负极材料的二硫化钼基复合材料研究进展,重点介绍了二硫化钼/碳和二硫化钼/过渡金属化合物体系的形貌特征、比容量、循环稳定性等,并对二硫化钼基负极材料的发展趋势进行了展望。  相似文献   

3.
Electrochemical properties of mixed titanium-niobium oxide TiNb2O7 (TNO) synthesized via vacuum annealing as high potential anode material for lithium-ion batteries were investigated. Crystal structure, size, and morphology are nearly independent of the annealing atmosphere for starting materials but the color of vacuum-annealed TNO (TNO-V) is dark blue while white for the air-annealed one (TNO-A). X-ray photoelectron spectroscopy analysis also indicated that Ti4+ and Nb5+ in TNO are partially reduced into Ti3+ and Nb4+ due to the introduction of oxygen vacancy. Electronic conductivity for TNO-V was around 10−3 S cm−1 at room temperature and much higher than that for TNO-A (=10−11 S cm−1). In electrochemical testing, both TNO-A and TNO-V electrodes showed reversible capacity of 260-270 mAh g−1 at low current density of 0.5 mA cm−2, while at higher current density of 5.0 mA cm−2, TNO-V electrode retained higher reversible capacity of 140 mAh g−1 than that for TNO-A electrode (=80 mAh g−1). The enhancement of intrinsic electronic conductivity greatly contributes to improve the rate performance of TNO.  相似文献   

4.
以Cu(NO32·3H2O和氢氧化钠为原料,通过水热法制备氧化铜样品。采用X射线衍射法对其进行物相结构的表征。针对pH、反应时间和反应体系浓度等反应条件,对氧化铜样品的物相结构和电化学性能的影响进行了讨论。结果表明,采用该方法制备的氧化铜负极材料在0.1 C(67 mA/g)电流密度下首次充放电容量分别为406.5 mA·h/g和867.4 mA·h/g,在大倍率循环下具有较高的容量保持率。  相似文献   

5.
TiNb2O7 powders are synthesized via a newly developed agar-assisted sol-gel process for the first time. Phase-pure TiNb2O7 powders are obtained upon calcination at 800 °C. On contrast, TiNb2O7 powders synthesized via the conventional solid-state method require high calcination temperature at 1100 °C for the complete compound formation. The samples synthesized with agar improve the morphology with submicron-sized particles. The formed porous structure is favorable for enhancing the electrochemical kinetics due to the large contact area between the electrode and the electrolyte. Based on the electrochemical active surface area analysis, the electrical double-layer capacitance of TiNb2O7 powders synthesized via both the agar-assisted and the solid-state method is 145 mF cm?2 and 22 mF cm?2, respectively. The electrochemical active surface area of the sample prepared via the agar-assisted method is higher than that of the sample prepared via the solid-state method. The TiNb2O7 sample synthesized via the agar-assisted process yields 284 mAh g?1 at 0.1 C, whereas the sample synthesized via the conventional solid-state method yields only 265 mAh g?1 at 0.1 C. The discharge capacities of the agar-assisted synthesized sample are 205 mAh g?1 and 174 mAh g?1 at 5 C and 10 C, respectively. Moreover, the sample exhibits high capacity retention of 91% after 100 discharge-charge cycles at 5 C. Based on the obtained results, the agar-assisted sol-gel process is inferred as one of the facile methods for preparing high performance anode materials for lithium-ion batteries.  相似文献   

6.
高懂儒  赵鹬 《精细化工》2020,37(3):445-451
综述了近年来国内外关于钒酸镍材料的合成方法、结构性质以及应用于锂离子电池新型负极材料的研究进展。钒酸镍(Ni3V2O8、NiV3O8等)电极材料具有成本低、环境友好、比容量高、倍率性能优异等优点,但其在充放电过程中体积的巨大变化、电导性差以及比表面积低等问题严重影响了其规模化应用。该文从三个方面阐述了近年来通过电极材料微纳米化、复合化、表面包覆等手段有针对性的进行钒酸镍电极材料改性的研究进展,积极探索了高性能钒酸镍材料的合成方法,展望了今后重点开展的研究方向,对于钒酸镍材料的广泛应用具有一定的学术价值和实用意义。  相似文献   

7.
We investigate the thermal and electrochemical properties of xFe2O3-(100-x) P2O5 glass (x = 20, 30, 40, and 50 mol%) and 50Fe2O3-50P2O5 (50FeP) glass-ceramics as anodes for lithium-ion batteries (LiBs). The results show that both the glass transition temperature and the energy bandgap monotonically decrease with the increasing Fe2O3 while a critical Fe2O3 content of 30 mol% is found to give glass the highest thermal stability, the largest capacity at 1 Ag-1, and the lowest charge-transfer resistance before cycling. Moreover, Fe3(P2O7)2 crystals formed during heat treatment in 50FeP glass effectively enhances the electrochemical properties. The optimum heat treatment condition for 50FeP glass is found at 1033 K for 4 h, that is, 1033 K-4 h sample enables a reversible capacity of 237 mA h g−1 at the end of 1000 cycles at 1 Ag-1, which is more than 1.5 times higher than that of the 50FeP glass-based anode. These findings suggest that the Fe2O3-P2O5 glass-ceramics hold significant potential for the effective development of new types of glass anodes for future advanced LiBs.  相似文献   

8.
为了提高LiNiO2的电化学性能,用固相反应法制备了铌掺杂LiNiO2材料,并用X射线衍射(XRD)分析、恒电流滴定技术(GITT)、电化学阻抗谱(EIS)等方法研究铌掺杂量对LiNiO2的结构和性能的影响。结果表明适量的铌(Nb)掺杂可以提高LiNiO2层状结构的有序程度,降低Li+/Ni2+混合程度,降低电荷转移阻抗,提高活性材料中锂离子的扩散系数。其中LiNi0.99Nb0.01O2在0.5C循环100次的容量保持率为91.4%,5C时放电比容量为143 mA·h/g。而未掺杂铌的LiNiO2在相同条件下的容量保持率和比容量仅为69.2%和127 mA·h/g。结果说明铌掺杂能够有效提高LiNiO2的电化学性能。  相似文献   

9.
以微米级Al-Si合金粉为原料,采用去合金法和溶胶-凝胶法工艺制备了无定形TiO2包覆珊瑚状多孔Si结构的P-Si@a-TiO2材料,通过XRD、XPS、SEM和TEM测试对材料的结构和形貌进行了表征,分析并揭示了TiO2层的制备机理及包覆层厚度对复合材料电化学性能的影响规律。结果表明,珊瑚状多孔Si结构和适当厚度的包覆层可以有效缓冲材料的体积膨胀,提高电极的循环稳定性。当TiO2包覆层为10 nm时,对材料的改性效果最佳。此时的P-Si@a-TiO2材料的电极电势差仅为0.321 V,在1.0 A/g下循环50次后具有1357.4 mA·h/g的放电比容量,展现出优越的电化学性能。  相似文献   

10.
锂离子电池高镍三元材料具有循环寿命长、绿色环保、成本低等优点,已成为电动汽车、便携式电子设备等领域的首选正极材料。但是,镍含量的增加容易使材料表面结构不稳定、界面副反应增加,导致材料的循环性能降低。主要从单层包覆和双层包覆两个方面综述了高镍三元材料的改性研究,介绍了不同包覆材料对其电化学性能的影响。双层包覆能更好地改进高镍三元材料的电化学性能,但是在清除氟化氢方面仍需进行研究。  相似文献   

11.
锂离子电池Sn-Co合金负极材料的研究进展   总被引:4,自引:1,他引:3       下载免费PDF全文
锡基合金有望替代碳成为新一代高容量锂离子电池的负极材料。Sn-Co合金是研究最为广泛的锡基合金负极材料之一,但该材料存在首次不可逆容量大、循环稳定性差等问题,限制了其实际应用。Sn-Co合金的电化学性能主要受Sn/Co比例、活性材料结晶形态、颗粒尺寸和电极结构等因素影响,纳米材料可提高电极循环稳定性,但易导致较大的首次不可逆容量,而多孔结构的Sn-Co活性材料或多孔结构的电极集流体,有利于电极综合性能的提高。Sn-Co合金中引入碳可明显改善电极的循环容量和循环稳定性。同时综述了Sn-Co合金负极材料的制备方法及其优缺点,并对锡基合金负极材料的发展方向进行了展望。  相似文献   

12.
Cubic MnO with particle sizes of ∼200 nm and ∼600 nm was synthesized by decomposition of MnCO3. The corresponding MnO/C composite was obtained by thermal treatment of mixture of MnCO3 and sucrose. The structure and morphology of the products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical experiments showed that the as-prepared MnO/C exhibited promising electrochemical properties, and could potentially be used as anode material in lithium-ion batteries. MnO/C delivered a reversible capacity of about 470 mAh/g after cycling 50 times, when testing at 75 mA/g. The reversible capacity, when tested at 150, 375, 755 mA/g, reached 440, 320, 235 mAh/g, respectively. The good electrochemical performance was ascribed to the smaller particle size and the efficient carbon coating on MnO.  相似文献   

13.
《Ceramics International》2016,42(14):15623-15633
Li-rich layered oxides are the most promising cathode candidate for new generation rechargeable lithium-ion batteries. In this work, La2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials were fabricated via a combined method of sol-gel and wet chemical processes. The structural and morphological characterizations of the materials demonstrate that a thin layer of La2O3 is uniformly covered on the surface of Li1.2Mn0.54Ni0.13Co0.13O2 particles, and the coating of La2O3 has no obvious effect on the crystal structure of Li-rich oxide. The electrochemical performance of La2O3-coated Li-rich cathodes including specific capacity, cycling stability and rate capability has been significantly improved with the coating of La2O3. The Li1.2Mn0.54Ni0.13Co0.13O2 coated with 2.5 wt% La2O3 exhibits the highest discharge capacity, improved cycling stability and reduced charge transfer resistance, delivering a large discharge capacity of 276.9 mAh g−1 in the 1st cycle and a high capacity retention of 71% (201.4 mAh g−1) after 100 cycles. The optimal rate capability of the materials is observed at the coating level of 1.5 wt% La2O3 such that the material exhibits the highest discharge capacity of 90.2 mAh g−1 at 5 C. The surface coating of La2O3 can effectively facilitate Li+ interfacial diffusion, reduce the structural change and secondary reactions between cathode materials and electrolyte during the charge-discharge process, and thus induce the great enhancement in the electrochemical properties of the Li1.2Mn0.54Ni0.13Co0.13O2 materials.  相似文献   

14.
《Ceramics International》2016,42(6):6874-6882
Due to the characteristics of an electronic insulator, Na2Li2Ti6O14 always suffers from low electronic conductivity as anode material for lithium storage. Via Ag coating, Na2Li2Ti6O14@Ag is fabricated, which has higher electronic conductivity than bare Na2Li2Ti6O14. Enhancing the Ag coating content from 0.0 to 10.0 wt%, the surface of Na2Li2Ti6O14 is gradually deposited by Ag nanoparticles. At 6.0 wt%, a continuous Ag conductive layer is formed on Na2Li2Ti6O14. While, particle growth and aggregation take place when the Ag coating content reaches 10.0 wt%. As a result, Na2Li2Ti6O14@6.0 wt% Ag displays better cycle and rate properties than other samples. It can deliver a lithium storage capacity of 131.4 mAh g−1 at 100 mA g−1, 124.9 mAh g−1 at 150 mA g−1, 119.1 mAh g−1 at 200 mA g−1, 115.8 mAh g−1 at 250 mA g−1, 111.9 mAh g−1 at 300 mA g−1 and 109.4 mAh g−1 at 350 mA g−1, respectively.  相似文献   

15.
NASICON结构的磷酸钛锂[LiTi2(PO43]作为新型的锂离子电池负极材料,具有环境友好、循环性能好、优异的热稳定性等优点,被认为是最具有应用前景的负极材料。LiTi2(PO43具有138 mA·h/g的理论容量和2.5 V的平稳放电平台,但是LiTi2(PO43电子电导率低、锂离子扩散系数小等缺点限制了其实际应用。因此,针对以上缺点,众多研究者通过对LiTi2(PO43进行改性,极大地提高其电子电导率和锂离子扩散系数。简单介绍了LiTi2(PO43的结构与性能,主要从制备方法和改性方法两方面综述了近年来的研究进展,并指出了LiTi2(PO43材料目前研究存在的问题,展望了未来的应用前景。  相似文献   

16.
便携式电子产品、电动汽车和储能领域的快速发展对电池能量密度的要求越来越高,正极材料是限制电池能量密度的主要因素。过渡金属氟磷酸盐(A2MPO4F,A=Li、Na,M=Mn、Fe、Co、Ni)是一类高比容量(~300 mA·h/g)和高能量密度(>1 000 W·h/kg)的新型正极材料。主要介绍了A2MPO4F的结构、合成方法与改性方面的最新进展。讨论了A2MPO4F所面临的主要挑战,特别是实现两电子反应所面临的困难。展望了它们的应用前景。  相似文献   

17.
《Ceramics International》2023,49(20):33147-33155
Optimizing the structure of materials has proven to be an efficient solution for improving the electrochemical performance of lithium-ion batteries. In this work, SnO2-WS2-CNTS (SWC) ternary composites were prepared by hydrothermal and ball milling methods to first obtain SnO2-WS2 mixture, which was then embedded on CNTS to form a special multi-level structure. Due to the special 2D structure of transition metal sulfide WS2 and CNTS, the de-intercalation speed of lithium ions is greatly increased and the inherent particle aggregation phenomenon of SnO2 is weakened. The three materials show their advantages while compensating for each other's disadvantages, forming an interesting synergistic effect which results in extremely stable anode materials. At 0.2Ag-1, the capacity of SWC reaches 930.71 mAhg-1 after 100 cycles, and reaches 1043 mAhg-1 after 1000 cycles at 1.0Ag-1. It is worth noting that after multiple cycles, SWC still exhibits an extremely stable state in the SEM image. The above results confirm that the special structure of SWC leads to excellent electrochemical performance, and its simple preparation method makes it a potential leading battery anode material in the future.  相似文献   

18.
《Ceramics International》2019,45(1):674-680
Nickel-rich lithium material LiNixCoyMn1-x-yO2(x > 0.6) becomes a new research focus for the next-generation lithium-ion batteries owing to their high operating voltage and high reversible capacity. However, the rate performance and cycling stability of these cathode materials are not satisfactory. Inspired by the characteristics of Y2O3 production, a new cathode material with ultrathin-Y2O3 coating was introduced to improve the electrochemical performance and storage properties of LiNi0.8Co0.1Mn0.1O2 for the first time. XRD, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS) and XPS were used to mirror the crystal and surface of LiNi0.8Co0.1Mn0.1O2 particles, results i that a uniform interface formed on as-prepared material. The impacts on the electrochemical properties with or without Y2O3 coating are discussed in detail. Notably, galvanostatic discharge-charge tests appear that Y2O3-coated sample especially 3% coating displayed a better capacity retention rate of 91.45% after 100 cycles than the bare one of 85.07%.  相似文献   

19.
At present, metal ions from spent lithium-ion batteries are mostly recovered by the acid leaching procedure, which unavoidably introduces potential pollutants to the environment. Therefore, it is necessary to develop more direct and effective green recycling methods. In this research, a method for the direct regeneration of anode materials is reported, which includes the particles size reduction of recovered raw materials by jet milling and ball milling, followed by calcination at high temperature after lithium supplementation. The regenerated LiNi0.5Co0.2Mn0.3O2 single-crystal cathode material possessed a relatively ideal layered structure and a complete surface morphology when the lithium content was n(Ni + Co + Mn):n(Li) = 1:1.10 at a sintering temperature of 920 ℃, and a sintering time of 12 h. The first discharge specific capacity was 154.87 mA·h·g-1 between 2.75 V and 4.2 V, with a capacity retention rate of 90% after 100 cycles.  相似文献   

20.
《Ceramics International》2017,43(5):4309-4313
A combination of high-energy ball milling and constant pressure chemical vapor deposition was used to prepare carbon-coated SiO/ZrO2 composites. It was found that the as-prepared composites were composed of amorphous carbon, amorphous SiO, and paracryslalline ZrO2. The electrochemical analysis results revealed excellent electrochemical performances for the composites, including a high initial discharge capacity (1737 mA h g−1), a remarkable cyclic stability (reversible capacity of 721 mA h g−1 at 800 mA g−1, after 100 cycles), and a good rate capability (870 mA h g−1 at 800 mA g−1). These features demonstrate that these composites are promising alternative candidates for high-efficiency electrode materials of Li-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号