首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnesium aluminate spinel (MgAl2O4) forms an interesting system having tetrahedral and octahedral voids filled with near similar sized divalent Mg2+ and trivalent Al3+ cations. Structural disorder (e.g., Mg–Al antisite defects) can be tuned by synthetic conditions. This study reports the evolution of Mg/Al disorder in MgAl2O4 prepared by combustion synthesis using different types of fuels. The effect of nature of fuel and the final calcination temperature (600°C–900°C for 9 h) on degree of cation ordering has been investigated combining powder X‐ray (XRD) and neutron (NPD) diffraction. The results indicate very high degree of inversion in the samples crystallized at low annealing temperature, which on further annealing reduces toward the thermodynamically stable values. Raman spectroscopy, probing MgO4, and AlO4 tetrahedral bonds, confirmed the results at a local level.  相似文献   

2.
Conclusions We investigated compositions, properties and structure of elementary nuclei for Kimpersai chrome spinels, separated by acids from rocks of 6 new sources in Kazakhstan.The chemical composition of chrome spinels is relatively constant and close to the stoichiometric, with R2O3: RO changing from 0.9 to 1.2.According to the classification given in [13]they are related to magnesia chromites (Mg, Fe) Cr2O4 The properties of chrome spinels change with their composition almost linearly. The melting temperature of the chrome spinel is 2050–2060°, that is, they are highly refractory materials and valuable raw materials for the production of new types of refractories.The x ray defraction method established that in the Kimpersai chrome spinels the ordinary crystalline structure is predominant. The bivalent cations of magnesium and iron are located in the tetrahedral form and the trivalent cations of chromium, aluminum and iron in the octahedral. In the elementary nucleus of such chrome-spinels the cations are distributed in the following manner: 5–6 ions Mg2+ and 2–3 ions Fe2+ are located in the tetrahedral, and 12–13 ions Cr3+, 2–3 ions Al3+, and 1 ion Fe3+ in the octahedral. The oxygen parameter for Kimpersai chrome spinels is somewhat greater than the value for the ideal spinel structure, which can be explained by the expansion of the tetrahedral gaps and the compression of the octahedral.Translated from Ogeupory, No.8, pp. 29–36, August, 1966.  相似文献   

3.
Lanthanum hexaaluminate is a promising competitor to establish yttria partially stabilized zirconia as a thermal barrier coating material for Ni‐based superalloy due to its relative low intrinsic thermal conductivity and low sinterability at temperatures exceeding 1100°C. Sr2+ and Ti4+ were selected as two dopants to partially substitute the La3+ and Al3+ in LaMgAl11O19, respectively. The variation in thermal conductivity with Sr2+ and Ti4+ fractions was analyzed based on structure information provided by X‐ray diffraction and Raman spectroscopy. The average crystal size of LaMgAl11O19 sintered at 1600°C for 10 min by spark plasma sintering is in nanoscale. The fully dense La1?xSrxMgAl11?xTixO19 solid solution showed a minimum thermal conductivity value (λ = 1.12 W/(m K)?1,T = 1273 K) at the composition of La0.5Sr0.5MgAl10.5Ti0.5O19,which possibly reduces from the enhanced phonon scattering due to mass and strain fluctuations at the Ln3+ and B3+ sites.  相似文献   

4.
Solid solution effects on thermal conductivity within the MgO–Al2O3–Ga2O3 system were studied. Samples with systematically varied additions of MgGa2O4–MgAl2O4 were prepared and the laser flash technique was used to determine thermal diffusivity at temperatures between 200°C and 1300°C. Heat capacity as a function of temperature from room temperature to 800°C was also determined using differential scanning calorimetry (DSC). Solid solution in the MgAl2O4–MgGa2O4 system decreases the thermal conductivity up to 1000°C. At 200°C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. At 1000°C, the thermal conductivity decreased 13% with a 5 mol% addition. Steady‐state calculations showed a 12.5% decrease in heat flux with 5 mol% MgGa2O4 considered across a 12 inch thickness.  相似文献   

5.
A novel series of (1-x)Ba0.45Sr0.55TiO3-xMgGa2O4 (x = 0, 10, 30, 50, 70 wt%) ceramics was prepared by a solid-state method to investigate the relationship between their dielectric properties and ion diffusion, composition effect, and lattice vibration. XRD refinement and DFT calculations of Ba0.45Sr0.55TiO3 (BST45) revealed that the substitution of Ga3+ and Mg2+, both of which have small polarizability for Ti4+, reached the saturation state at x = 10 wt%, thus decreasing the quality factor (Q value). In contrast, the addition of MgGa2O4 (MG) with x > 10 wt% significantly reduced the relative permittivity and improved the Q value owing to the compositional effect. The vibration spectra (Raman and FT-IR) confirmed that the Q value initially decreased owing to ion diffusion at x < 10 wt% and then increased with increasing MG content according to the composition effect. Therefore, the Q value was remarkably improved in the Ba0.45Sr0.55TiO3-MgGa2O4 composites, with good tunability and low relative permittivity.  相似文献   

6.
《Ceramics International》2023,49(8):12551-12562
Magnesium aluminate (MgAl2O4) spinel has grasped considerable attention in high-temperature application by right of its excellent properties. However, the poor sintering behavior of MgAl2O4 is detrimental to its further development. In the present work, the application of isostructural heterogeneous nucleation method provides a novel idea for optimizing the sintering behavior of refractory materials. A series of (1-x)MgAl2O4-xMg2TiO4 (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.1) spinel solid solutions with a present ration of components were fabricated from light calcined magnesia, reactive alumina and pre-preparation Mg2TiO4. The effect of Mg2TiO4 heterogeneous nucleating agent on the crystalline phase, densification, and microstructure evolution of MgAl2O4–Mg2TiO4 spinel solid solutions was studied. The XRD, XPS, and EDS results showed that Mg2TiO4 entered the lattice of MgAl2O4 to form a spinel solid solution, and the heterovalent substitution process was identified, where Ti4+ and Mg2+ ions of larger radius in the Mg2TiO4 replaced the Al3+ of smaller radius in the MgAl2O4. For the sample at x = 0.08, the spinel solid solutions exhibited the optimized densification with a relative density of 93.3%, an apparent porosity of 1.2%, and a compressive strength of 84.5 MPa. A significant increase in densification was related to the lattice distortion induced by ion size mismatch during the heterovalent substitution, thus accelerating the diffusion rate of Mg2+ and Al3+ ions in the spinelisation state. Moreover, the solid solubility content of Ti4+ in the MgAl2O4–Mg2TiO4 spinel solid solutions had a significant effect on the grain morphologies. The Mg2TiO4 heterogeneous nucleating agent significantly increased the spinelisation rate of MgAl2O4 spinel with negligible effect on densification.  相似文献   

7.
《Ceramics International》2023,49(10):15164-15175
Magnesium aluminate spinel (MgAl2O4) ceramics are high-performance and carbon-free materials widely used in both military and civilian fields. However, it is usually challenging to densify during the solid-state sintering process. The excellent properties of some rare earth oxides have been proved to promote the densification of MgAl2O4 spinel ceramics. But the mechanism of promoting sintering is not clear. In the present work, MgAl2O4 spinel ceramics have been successfully fabricated by co-doping CeO2 and La2O3 via a single-stage solid-state reaction sintering. The effects of addition amounts of CeO2 and La2O3 on phase compositions, microstructures, sintering characteristics, cold compressive strength, and thermal shock resistance of as-prepared MgAl2O4 spinel ceramics were systematically investigated. The results show that by co-doping CeO2 and La2O3 can increase the defect concentration due to the lattice distortion. This could promote the movement of Al3+ and Mg2+ at high temperature, which is beneficial to the formation of more secondary MgAl2O4 spinel. t-ZrO2 with more Ce4+ filling between spinel grains could prevent the growth of grains and promote the densification, besides the new-formed LaAlO3 that was mainly distributed along the grain boundary of the MgAl2O4 phase, both of which were favorable for the formation of dense microstructure of MgAl2O4 spinel materials. At the same time, the formation of more secondary MgAl2O4 spinel and sintering densification also improve the mechanical properties of spinel ceramics. La3+ will segregate to the spinel grain boundary, preventing grain boundary movement and absorbing the main crack's fracture energy. With 3 wt% CeO2 and 3 wt% La2O3 co-doping, the bulk density of the sample increased from 3.02 g∙cm−3 to 3.55 g∙cm−3; the apparent porosity decreased from 12.21% to 9.97%; the cold compressive strength increased from 172.88 MPa to 189.54 MPa; and the residual strength retention ratio after thermal shock increased from 84.92% to 89.15%.  相似文献   

8.
Single-stage processing of high-quality transparent functional polycrystalline ceramics is desirable but challenging. In the present work, spark plasma sintering (SPS) was employed for fabrication of Co2+:MgAl2O4 saturable absorbers for laser passive Q-switching. Densification of commercial MgAl2O4 powders, doped via co-precipitation, was carried out by conventional SPS and high-pressure SPS (HPSPS) under pressures of 60 and 400 MPa, respectively. The presence of LiF, a common sintering additive, was detrimental to optical properties as it promoted reaction of cobalt with sulfur impurities and the formation of Co9S8 inclusions. Densification by HPSPS without LiF allowed to obtain highly transparent Co2+:MgAl2O4. The optical properties of samples, with doping concentrations varying between 0.01 and 0.1 at.% Co2+, were assessed and saturable absorption was demonstrated at ~1.5 µm wavelength, exhibiting ground-state (σgs) and excited (σes) cross-sections of 3.5×10-19 and 0.8×10-19 cm2, respectively. Thus, it was established that HPSPS is an effective method to fabricate transparent Co2+:MgAl2O4 ceramics.  相似文献   

9.
The aqueous gel-casting technology has been widely used to prepare high-quality green body for various transparent ceramics with large dimension and complex shape. However, owing to the severe hydrolysis of MgAl2O4 powder, it is challenging to obtain thick aqueous slurry with high homogeneity and flowability. In this paper, the surface chemical state of MgAl2O4 powder was modified by introducing Ga3+, and stable MgAl1.9Ga0.1O4 aqueous slurry with high solid-phase loading (52 vol. %) and low viscosity (136 mPa·s, at a shear rate of 50 s-1) was successfully prepared. After pressureless presintering and hot isostatic pressing, the gel-cast sample exhibited much higher optical transmittance and more homogeneous microstructure than the dry-pressed sample, which is mainly derived from the improved homogeneity and densification of the green bodies and ceramics. The optical band gap, infrared cutoff wavelength, static refractive index and dispersion of both MgAl1.9Ga0.1O4 and MgAl2O4 transparent ceramics were systematically compared. It is indicated that the transparent MgAl1.9Ga0.1O4 ceramic has the increscent static refractive index of 1.695, the decrescent direct band gap energy of 6.15 eV and absorption coefficient of 0.49 cm-1 at 5 µm, which could be ascribable to the fact that Ga3+ has different electronic structure, higher electronic polarizability and larger ionic radius in comparison with Al3+. This work provides a dependable solution for preparation of spinel oxide ceramics with superior optical properties and large dimension.  相似文献   

10.
The 0.05 at.% Co:MgAl2O4 precursor was synthesized by the coprecipitation method from a mixed solution of magnesium, aluminum, and cobalt nitrates using ammonium carbonate as the precipitant. 0.05 at.% Co:MgAl2O4 transparent ceramics were successfully obtained via vacuum sintering and hot isostatic pressing (HIP) of 0.05 at.% Co:MgAl2O4 nanopowder calcined at 1100°C for 4 hours. The properties of powder and ceramics were comprehensively investigated. X-ray diffraction (XRD) results showed that Co:MgAl2O4 nanopowder had a pure spinel phase. Also, the in-line transmittances of the HIP posttreated Co:MgAl2O4 ceramics with the thickness of 1.2 mm were 82% at 400 nm and 84.7% at 900 nm. The average grain sizes of 0.05 at.% Co:MgAl2O4 ceramics before and after the HIP posttreatment were 11 and 28 μm, respectively. The calculated ground state absorption cross section of 0.05 at.% Co:MgAl2O4 ceramics was 2.9 × 10−19 cm2, indicating that this ceramics is a promising material applied as a saturable absorber for passive laser Q-switches in the 1.3-1.7 μm domain.  相似文献   

11.
Initial investigations on the preparation of highly transparent Fe2+:MgAl2O4 ceramics using nanopowders synthesized in a laser plume were carried out. For the first time, dense Fe2+:MgAl2O4 ceramics with high transmission in the mid-IR range were fabricated at a temperature as low as 1300°C and with a short sintering time (1 hour). The obtained Fe2+:MgAl2O4 ceramics contain a secondary (MgO)0.91(FeO)0.09 phase with a low wt% content, causing a substantial decrease in transmittance in the visible range. The transmittance increases with an increase in wavelength due to a decrease in Rayleigh scattering and reaches 85.6% at λ = 4 μm, which is close to the theoretical value. The absorption cross section of divalent iron ions was estimated to be σ = (1.66 ± 0.14) × 10−20 cm2.  相似文献   

12.
Transparent cobalt‐doped magnesium aluminate spinel (Co:MgAl2O4) ceramics with a submicrometer grain size were prepared by spark plasma sintering. For the first time, the nonlinear absorption of Co:MgAl2O4 transparent ceramics was experimentally demonstrated. Both ground state absorption (σGSA) and excited state absorption (σESA) were estimated using the solid‐state slow saturable absorber model based on absorption saturation measurements performed at 1.535 μm. σGSA and σESA for 0.03 at.% Co:MgAl2O4 were found to be 4.1 × 10?19 cm2 and 4.0 × 10?20 cm2, respectively. In the case of 0.06 at.% Co:MgAl2O4 ceramics, σGSA = 2.6 × 10?19 cm2 and σESA= 5.3 × 10?20 cm2 were determined.  相似文献   

13.
《Ceramics International》2020,46(11):19046-19051
In the present work, MgAl2-x(Mg0·5Ti0.5)xO4 (x = 0.02, 0.04, 0.06, 0.08, 0.10) solid solutions were synthesized via the traditional solid-state reaction route. The valence state of Ti ions, crystal structural characteristics, and microwave dielectric properties were discussed. A solid solution with spinel structure was revealed by the Rietveld refinement results. The partial substitution of (Mg0·5Ti0.5)3+ for Al3+ lowered the sintering temperature and improved the Q × f value of MgAl2O4 ceramic. The MgAl2-x(Mg0·5Ti0.5)xO4 solid solutions with x = 0.06 can be well sintered at 1425 °C in an oxygen atmosphere for 8 h and exhibits excellent microwave dielectric properties with εr = 9.1, Q × f = 98,000 GHz, τf = −61.36 ppm/°C. The sintering temperature of MgAl1·94(Mg0·5Ti0.5)0.06O4 microwave dielectric ceramics was approximately 200 °C lower than that of conventional MgAl2O4 ceramics.  相似文献   

14.
《Ceramics International》2023,49(16):26530-26539
Perovskite-like rhombohedral distorted solid solutions of BiFe1-х(M1/2Ti1/2)хO3 (M = Co, Ni, Zn, x = 0–0.11) were obtained by solid-phase synthesis. An indicator of the solid solution formation is the change of unit cells parameters, that corresponds to the ionic radii of mixed cations (M1/2Ti1/2)3+ (M = Co, Ni, Zn. Solid solutions of BiFe1-х(M1/2Ti1/2)хO3 (M = Co, Ni), in contrast to BiFe1-x(Zn1/2Ti1/2)xO3 demonstrate ferromagnetic hysteresis pels at room temperature. The x growth in the range from 0.01 to 0.11 for the BiFe1-х(M1/2Ti1/2)хO3 system leads to, the saturation magnetization MS and the remanent magnetization MR increase from ∼0.1 and ∼2.4⋅10−3 emu/g to ∼0.4 and ∼0.038 emu/g respectively. In the same time the coercive force Hc decreases from ∼120 to ∼80 Oe. For the BiFe1-х(Co1/2Ti1/2)хO3 system, a noticeably higher magnetic properties with a more complex dependence on x are observed. The maximum parameter values are observed at x = 0.04–0.05: MS = 0.83 and MR = 0.24 emu/g, Hc = 1.8 kOe. It is suggested that the detected anomalies of Co-containing solid solutions behavior are related to the one-ionic magnetocrystalline anisotropy of Co2+ cations. The BiFe1-х(M1/2Ti1/2)хO3 (M = Co, Ni) samples demonstrate piezoelectric constant d33 up to 7 pC/N. Due to the set of properties the materials obtained can be classified as high-temperature multiferroics.  相似文献   

15.
《Ceramics International》2022,48(22):33524-33537
In this work, nanosubmicron blue-green pigment powder based on the composition of MgxCo1-xCr2-yAlyO4(0 = x ≤ 1, 0 = y ≤ 2)was prepared by a gel casting method. X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Rietveld refinement with GSAS (General Structure Analysis System), and UV–Vis absorption spectroscopy were used to study the phase composition, grain size, morphology, cation distribution in the crystal structure and spectral absorption of the samples. Colour parameters were also studied by using a colour measurement spectrophotometer. The studies demonstrate that the distribution of cations in the crystal structure is disordered and that divalent and trivalent cations are mixed to occupy tetrahedral and octahedral sites. Furthermore, the substitution of ions at the A/B site leads to a change in the cation distribution ratio at the tetrahedral and octahedral sites. With increasing Mg2+ doping concentration, the inversion parameter of the spinel increases, while with increasing Al3+ doping concentration, the inversion parameter of the spinel decreases. In addition, changes in the calcining atmosphere lead to a change in the oxygen vacancy content in the structure. Under the condition of a reductive atmosphere, the oxygen vacancy content significantly increases, and the inversion parameter also increases. The colour difference for the synthesized MgxCo1-xCr2-yAlyO4 spinel powder is related to the proportion of chromophore ions occupying tetrahedral and octahedral sites and the number of oxygen vacancies.  相似文献   

16.
The microwave dielectric properties and crystal structures of MgAl2O4 ceramics synthesized using either molten-salt (MA-M) or solid-state reaction (MA-S) methods were characterized in this study. Raman and 27Al solid-state nuclear magnetic resonance spectra indicated that Al3+ cations primarily occupied in tetrahedral sites of the MA-M ceramic. The degree of inversion x, i.e., degree of cation disorder in tetrahedral and octahedral sites, of the MA-M was higher than that of MA-S; such the preferential site occupation of Al3+ cations enhanced the covalency of the MO bonds in the MO4 tetrahedra (M = Mg and Al), leading to a decrease in the lattice parameters. The Q·f of the MA-M fired at 1600 °C was 201,690 GHz, while the MA-S synthesized at 1600 °C exhibited a Q·f of just 85,100 GHz. Based on these results, an intermediate spinel structure with a greater x evidently has a higher Q·f, and therefore the cation distribution is closely related to the Q·f of the ceramic.  相似文献   

17.
《Ceramics International》2020,46(13):21351-21359
The luminescence properties of ceramic phosphors based on two spinel hosts MgAl2O4 and ZnAl2O4 doped with manganese ions have been studied. It has been found that the spectral properties of these phosphors can be strongly varied by changing synthesis conditions. Both types of doped ceramic spinel can serve as efficient Mn2+ green-emitting phosphors having peak emissions at 525 and 510 nm, respectively. Mn-doped MgAl2O4 spinel can also be prepared as an efficient Mn4+ red-emitting phosphor having peak emission at ~651 nm by using specific temperatures of heat treatment in air. It has also been shown that the conversion of Mn2+ to Mn4+ and viсe versa, as well as the coexistence of Mn2+ green and Mn4+ red emissions, can be accomplished by properly chosen annealing conditions of the same initially synthesized MgAl2O4:Mn sample. Manganese doped MgAl2O4 spinel with an optimal intensity ratio of green and red emissions can be a promising single-phase bicolor phosphor suitable for the development of warm white phosphor-converted LED lamps. On the other hand, it has been determined that perfectly normal ZnAl2O4 spinel cannot be doped with Mn4+ ions in contrast to partially inverse MgAl2O4 spinel. However, ZnAl2O4 samples unintentionally doped with impurity Cr3+ ions show emission spectra in the far-red region with well pronounced R, N and vibronic lines of Cr3+ luminescence due to the perfect normal spinel structure of synthesized ZnAl2O4 ceramics. Also, by partially substituting Al3+ cations for Mg2+ in ZnAl2O4 there is an opportunity to obtain Mn4+ doped or Mn4+/Cr3+ codoped far-red emitting phosphors which can be suitable for indoor plant growth lighting sources.  相似文献   

18.
The high hot strength of MgO–Cr2O3 refractory is often ascribed to its intimate aggregate/matrix bonding. For a fundamental comparison with it, ∼2 mm aggregates of MgO and Al2O3 were separately embedded in ZnAl2O4 and MgAl2O4 matrices, sintered at 1600°C, and examined. It was found that similarity of thermal expansion coefficient (TEC) between the aggregate and the matrix is critical to achieve good bonding and this is more important than the extent of interdiffusion. The TEC mismatch of ≥5.7 × 10−6 K−1 caused significant undesirable debonding in MgO aggregate/MgAl2O4 matrix sample and MgO/ZnAl2O4 despite >736 μm Zn2+ diffusion depth in the latter. Direct bonding, as inferred from a thicker interfacial reaction layer and a greater shift of the aggregate/matrix interface before and after firing, was better in MgAl2O4/ZnAl2O4 combination, followed by tabular Al2O3/ZnAl2O4 and Al2O3/MgAl2O4. Powder X-ray diffraction indicated that the volatilization of ZnAl2O4 at 1600°C in air was negligible compared to MgO–Cr2O3.  相似文献   

19.
The effect of the inner particle structure on Li insertion activity and electronic structure of the nano-crystalline Li-Ti-O spinels was studied on materials prepared by solid state and solvothermal synthesis. The high temperature prepared materials of composition corresponding to Li4Ti5O12 feature particles with characteristic size of ca. 200 nm with randomly distributed defects. The products of solvothermal synthesis with composition Li1.1Ti1.9O4+δ, feature cubic particles of characteristic dimension of ca. 50 nm; the characteristic particle size differs from that of the coherent domain determined by X-ray diffraction. The reduction of the solvothermal and high temperature synthesized nano-crystalline spinels in Li containing solutions leads according to 6Li MAS NMR spectra to Li insertion into tetrahedral 8b and octahedral 16c position, respectively. Additional broad NMR signal attributable to a Knight shift was observed in spectra of partially reduced high temperature spinels. In the case of solvothermal spinels is the Knight shift signal less pronounced and appears only in spectra of samples in which the phase transition occurs on the local level. The UV-vis-NIR spectra of the partially reduced Li-Ti-O spinel samples correspond to expected semiconductor character of Li-Ti-O spinels. Both types of materials are characterized by band gap of 3.8 eV (high temperature spinel) and 3.5 eV (solvothermal material). Partial reduction accompanied with Li insertion causes additional optical transition in the visible to near infrared region, which can be attributed to formation of trivalent Ti, character of which changes with degree of reduction. The behavior observed for partially reduced high temperature spinels is similar to that reported for TiO2 (anatase). The spectral behavior of the partially reduced solvothermal spinels is more complex and reflects suppressed phase transition.  相似文献   

20.
《Ceramics International》2022,48(3):3351-3361
Petal-like MgAl2O4 spinel was successfully prepared using a novel inorganic salt-assisted nonhydrolytic sol-gel method without a template and was employed as absorbent in the removal of the Congo red (CR). The effects of the inorganic salt type, heat-treatment temperature, and dwelling time on the morphology and phase composition of the petal-like MgAl2O4 spinel were investigated systematically. Results indicated that when Na2MoO4 was employed as the salt and the heat-treatment temperature and dwelling time were 600 °C and 5 h, respectively, the as-obtained petal-like MgAl2O4 spinel exhibited a highly uniform morphology with a thickness of 19–23 nm and a length of 240–280 nm. The N2 adsorption-desorption results revealed that the petal-like MgAl2O4 exhibited a large BET specific surface area of 161 m2g-1 with a pore volume of 0.24 cm3g-1. The growth mechanism of the petal-like MgAl2O4 is believed to be the formation of a two-dimensional layered network structure by the coordination between the condensation product of the magnesium aluminium bimetallic alkoxides and the ions in the salt. The as-prepared MgAl2O4 petal exhibited an effective adsorption capacity toward anionic dyes CR. The maximum adsorption capacity of CR onto the mesoporous MgAl2O4 petal was found to be 572.01 mg/g, it is showed the petal-like MgAl2O4 exhibit huge potential of application in the field of environmental remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号