首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(4):4642-4647
Tunable up-conversion luminescent material KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) has been synthesized by a typical hydrothermal process. Under 980 nm laser diode (LD) excitation, the emission intensity and the corresponding luminescence colors of KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) have been investigated in detail. The energy transfer from the Yb3+ sensitizer to Ho3+, Er3+ and Tm3+ activators plays an important role in the development of color-tunable single- phased phosphors. The emission intensity keep balance through control of the Ho3+ co-doping concentrations, white light was experimentally shown at KY(MoO4)2: 20 mol% Yb3+, 0.8 mol% Er3+, 0.5 mol% Tm3+, 1.0 mol% Ho3+ phosphor with further calcination at 800 °C for 4 h under 980 nm laser excitation. The color tunability, high quality of white light and high intensity of the emitted signal make these up-conversion (UC) phosphors excellent candidates for applications in solid-state lighting.  相似文献   

2.
Novel up‐conversion (UC) luminescent nanopowders, Sr2CeO4:Yb3+,Ln3+ (Ln = Er, Tm, Ho) were prepared with Pechini method. The Sr2CeO4:Yb3+,Ln3+ (Ln = Er, Tm, Ho) nanopowders had an orthorhombic crystal structure, and showed olive‐like morphology with the length of about 260 nm and width of about 130 nm. Under 980 nm lazer excitation, the Sr2CeO4:Yb3+/Er3+, Sr2CeO4:Yb3+/Tm3+, and Sr2CeO4:Yb3+/Ho3+ nanophosphors exhibit strong green, blue, and green UC luminescence, respectively. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.  相似文献   

3.
Rare‐earth vanadates of the form REVO4 (RE = Y, La, Gd, and Lu) doped by Yb3+/Ho3+, Yb3+/Er3+, or Yb3+/Tm3+ lanthanide ions were successfully synthesized using the sol–gel method and annealing at 600°C in an air atmosphere. The structure and morphology of the prepared nanocrystals were investigated by X‐ray diffraction, thermogravimetric analysis, transmission electron microscopy, and energy‐dispersive X‐ray spectroscopy. All prepared materials were homogenous and had nanosized dimensions. Their elemental compositions were confirmed by optical emission spectrometry. Spectroscopic analysis of the materials was carried out by measuring excitation and emission spectra, luminescence decays, and dependence between the intensity of the luminescence and the laser energy. Following effective excitation by NIR radiation, Ln3+ co‐doped vanadate matrices exhibited a strong up‐conversion (UC) luminescence. Differences in spectroscopic properties between monoclinic LaVO4 and tetragonal YVO4, GdVO4, or LuVO4 doped by Ln3+ ions were observed, indicating the influence of the crystal structure on the UC emission. Drawing conclusions from these spectroscopic investigations, the UC mechanisms were proposed, including energy‐transfer processes between Yb3+ ions and emitting ions.  相似文献   

4.
《Ceramics International》2023,49(12):20200-20209
A variety of lanthanide ions doped bismuth titanate (Bi4Ti3O12) luminescent materials with eminent down-conversion (DC) and up-conversion (UC) luminescence performance have been fabricated via a facile sol-gel approach. The XRD, XPS, and EDX elemental mapping results confirm the phase structure of orthorhombic Bi4Ti3O12 (BTO), and the lanthanide activator ions occupy the Bi3+ lattice sites in the BTO crystal. Under UV or NIR excitation, the Eu3+, Yb3+/Ln3+ (Ln = Er, Tm, and Ho) doped Bi4Ti3O12 samples exhibit characteristic red, green, blue, and green emissions. The luminescent mechanisms of the BTO:Eu3+ and BTO:Yb3+/Ln3+ samples are discussed based on the energy level diagrams. The doping concentrations of Eu3+, Yb3+, Er3+, Tm3+, Ho3+ ions and annealing temperature and time are optimized, whose optimal values are determined to be 14, 8, 1, 0.4, 1 mol% and 800 oC, 4 h. The as-obtained LED devices fabricated by Bi4Ti3O12:Eu3+ and Yb3+/Ln3+ phosphors exhibit dazzling multicolor visible light emissions from different Ln3+ ions. The results indicate that the as-obtained Ln3+ doped BTO phosphors may be potentially utilized in LED devices and solid-state lighting. Furthermore, the Eu3+ and Er3+ co-doped BTO samples exhibit different DC and UC luminescence spectral profiles when excited at various UV, visible, or NIR wavelengths, revealing their eminent feasibility and great potential in anti-counterfeiting applications.  相似文献   

5.
Using a modified sol–gel method, LiLa(MoO4)2: Tm3+/Ho3+/Yb3+ phosphors with tailorable up‐conversion (UC) emission colors were prepared. Under the excitation of a 980 nm laser diode, up‐conversion red and green emissions in Ho3+/Yb3+ co‐doped and blue emission in Tm3+/Yb3+ co‐doped LiLa(MoO4)2 were observed, respectively. The intensities of the RGB (red, green, and blue) emissions could be controlled by varying concentrations of Tm3+ or Ho3+, and the optimal composition was also determined. In Tm3+/Ho3+/Yb3+ co‐doped LiLa(MoO4)2, the UC emission colors could be tuned from blue through white to yellow by adjusting the concentrations of Tm3+ or Ho3+. The UC excitation mechanisms were also investigated based on the power dependence of UC luminescence intensity.  相似文献   

6.
《Ceramics International》2022,48(21):31344-31353
Highly thermally stable Er3+/Tm3+/Yb3+ tri-doped bismuth lanthanum tungstate phosphors were prepared by high temperature solid-state reaction method. The structural and morphological properties of the prepared phosphors were analysed by X-ray diffraction (XRD), Raman spectroscopy and Scanning electron microscopy (SEM) coupled with energy dispersion spectrum (EDS). Visible upconversion (UC) luminescence was measured by exciting the phosphors with 980 nm laser radiation. The dependence of the UC intensity of each emission band of Er3+ and Tm3+ ions as a function of temperature in the range from 30 to 300 K was monitored. Fluorescence intensity ratios (FIR) of thermally coupled levels (TCL) and non-thermally coupled levels (NTCL) were analysed and verified with appropriate theoretical validation. The absolute (SA) and relative sensitivities (SR) were estimated and compared with the reported systems. In the present case of BiLaWO6: Er3+/Tm3+/Yb3+, SR (0.43 % K?1) related to TCL of Er3+ UC is found to have maximum sensitivity compared to any of the NTCL combinations at 300 K. From this study we inferred that the SR values estimated from NTCL are smaller than that of TCL involved in BLW: Er3+/Tm3+/Yb3+ phosphor. The temperature dependent CIE color coordinates were also evaluated in the cryogenic temperature region.  相似文献   

7.
Up-conversion luminescent (UCL) materials are excellent candidate for optical anti-counterfeiting and the exploitation of multi-wavelength NIR light triggered UC phosphors with tunable color emission is essential for reliable anti-counterfeiting technology. Herein, a series of lanthanide ions (Er3+, Er3+–Ho3+, and Yb3+–Tm3+) doped BaTiO3 submicrometer particles are synthesized through a modified hydrothermal procedure. XRD and SEM measurements were carried out to identify the structure and morphology of the samples and their UCL properties under 808, 980, and 1550 nm NIR excitation are investigated. Er3+ singly doped sample exhibits Er3+ concentration-dependent and excitation wavelength-dependent emission color from green to yellow and orange. The corresponding UC mechanisms under three NIR light excitation are clarified. Pure red emission under 1550-nm excitation was obtained by introducing small amount of Ho3+ and the fluorescent lifetime test was used to confirm the energy transfer from Er3+ to Ho3+. In addition, Yb3+–Tm3+ co-doped sample shows intense blue emission from 1G4 → 3H6 transition of Tm3+ under 980-nm excitation. As a proof of concept, the designed pattern using phosphors with red, green, and blue three primary color emissions under 1550, 808, and 980 nm NIR excitation was displayed to demonstrate their anti-counterfeiting application.  相似文献   

8.
Ho3+/Yb3+ co-doped NaGdTiO4 phosphors were synthesized by a solid-state reaction method. The upconversion (UC) luminescence characteristics excited by 980 nm laser diode were systematically investigated. Bright green UC emission centered at 551 nm accompanied with weak red and near infrared (NIR) UC emissions centered at 652 and 761 nm were observed. The dependence of UC emission intensity on excitation power density showed that all of green, red and NIR UC emissions are involved in two-photon process. The UC emission mechanisms were discussed in detail. Concentration dependence studies indicated that Ho3+ and Yb3+ concentrations had significant influences on UC luminescence intensity and the intensity ratio of the red UC emission to that of the green one. Rate equations were established based on the possible UC mechanisms and a theoretical formula was proposed to describe the concentration dependent UC emission. The UC luminescence properties of the presented material was evaluated by comparing with commercial NaYF4:Er3+, Yb3+ phosphor, and our sample showed a high luminescence efficiency and good color performance, implying potential applications in a variety of fields.  相似文献   

9.
《Ceramics International》2023,49(6):9574-9583
Here we adopt trivalent lanthanide (Ln3+ = Er3+, Er3+/Ho3+, and Yb3+/Tm3+) doped Sr2LaNbO6 (SLNO) as novel upconversion luminescence (UCL) materials for achieving UCL and optical temperature sensing under 980 nm excitation. Specifically, Er3+ single doped Sr2LaNbO6 phosphors present bright high-purity green emission under the 980 nm excitation. While co-doping with the Ho3+ ions, the component of red emission from Er3+ ions increases significantly and sample show a remarkable enhancement of luminescent intensity relative to SLNO:Er3+ sample. The above-mentioned phosphors and Yb3+/Tm3+ co-doped phosphor (blue emission) successfully achieve high-purity trichromatic UCL and mixed white light output in the same host. Furthermore, the temperature sensing performance of the SLNO:Er3+/Ho3+ phosphor based on the fluorescence intensity ratio (FIR) is systematically studied for the first time. The temperature sensing based on the non-thermal coupling levels (NTCLs) exhibit higher sensitivity than that based on the thermal coupling levels (TCLs). The maximum absolute and relative sensitivity for 4F9/2/4I9/2 NTCLs reach 0.16803 K?1 at 427 K and 0.01591 K?1 at 641 K, respectively. Interestingly, NIR emission of 4I9/2 → 4I15/2 transition presents a thermal enhancement, while visible emissions show thermal quenching. These results indicate that the Ln3+ doped Sr2LaNbO6 UCL phosphors have potential applications in the fields of non-contact temperature sensors, full-color displays, and anti-counterfeiting.  相似文献   

10.
A series of novel SrLu2O4: x Ho3+, y Yb3+ phosphors (x=0.005‐0.05, y=0.1‐0.6) were synthesized by a simple solid‐state reaction method. The phase purity, morphology, and upconversion luminescence were measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. The doping concentrations and sintering temperature were optimized to be x=0.01, y=0.5 and T=1400°C to obtain the strongest emission intensity. Under 980 nm laser diode excitation, the SrLu2O4:Ho3+, Yb3+ phosphors exhibit intense green upconversion (UC) emission band centered at 541 nm (5F4,5S25I8) and weak red emission peaked at 673 nm (5F55I8). Under different pump‐power excitation, the UC luminescence can be finely tuned from yellow‐green to green light region to some extent. Based on energy level diagram, the energy‐transfer mechanisms are investigated in detail according to the analysis of pump‐power dependence and luminescence decay curves. The energy‐transfer mechanisms for green and red UC emissions can be determined to be two‐photon absorption processes. Compared with commercial NaYF4:Er3+, Yb3+ and common Y2O3:Ho3+, Yb3+ phosphors, the SrLu1.49Ho0.01Yb0.5O4 sample shows good color monochromaticity and relatively high UC luminescence intensity. The results imply that SrLu2O4:Ho3+, Yb3+ can be a good candidate for green UC material in display fields.  相似文献   

11.
Yb3+/Er3+ codoped La2S3 upconversion (UC) phosphors have been synthesized using high‐temperature solid‐state method. Under 971‐nm excitation, the maximum luminescence power can reach 0.64 mW at the excitation power density of 16 W/cm2 and an absolute power yield of 0.36% was determined by an absolute method at the excitation power density of 3 W/cm2, and the quantum yield of La2S3:Yb3+, Er3+ (green ~0.18%, red ~0.03%, integration ~0.21) was comparable to that of NaYF4:Yb3+, Er3+ nanocrystals (integration ~0.005–0.30). Frequency upconverted emissions from two thermally coupled excited states of Er3+ were recorded in the temperature range 100–900 K. The maximum sensitivity of temperature sensing is 0.0075 K?1. As the excitation power density increases, the temperature of host materials rapidly rises and the top temperature can reach to 600 K. Given the intense UC emission, high sensitivity, as well as good photothermal stability, La2S3:Yb3+/Er3+ phosphor can become a promising composite material for photothermal ablation of cancer cells possessing the functions of temperature sensing and in vivo imaging.  相似文献   

12.
《Ceramics International》2022,48(4):5267-5273
Yb3+/Ho3+ codoped and Yb3+/Er3+/Ho3+ tridoped TeO2–BaF2–LaF3–La2O3 (TBLL) fluorotellurite glasses with low OH? absorption (0.026 cm-1), high glass transition temperature (434 °C) and low phonon energy (784 cm-1) were prepared. Their mid-infrared fluorescence properties and related energy transfer (ET) mechanism were studied under 980 nm excitation. A strong emission at 2.85 μm was realized in Yb3+/Ho3+ codoped tellurite glass, which was attributed to the high-efficiency ET from Yb3+ ions to Ho3+, and the ET efficiency was 91.1%. Further introduction of Er3+ ions induced stronger 2.85 μm emission, and the ET efficiency was improved to 96.2%, ascribed to the establishment of more ET channels and Er3+ ions playing the role of ET bridge between Yb3+ and Ho3+ ions. These results indicate that the Yb3+/Er3+/Ho3+ tridoped tellurite glass could be a hopeful gain medium material for the ~3 μm fiber laser.  相似文献   

13.
The upconversion (UC) luminescence of Li+/Er3+/Yb3+ co-doped CaWO4 phosphors is investigated in detail. Single crystallized CaWO4:Li+/Er3+/Yb3+ phosphor can be obtained, co-doped up to 25.0/5.0/20.0 mol% (Li+/Er3+/Yb3+) by solid-state reaction. Under 980 nm excitation, CaWO4:Li+/Er3+/Yb3+ phosphor exhibited strong green UC emissions visible to the naked eye at 530 and 550 nm induced by the intra-4f transitions of Er3+ (2H11/2,4S3/24I15/2). The optimum doping concentrations of Yb3+/Li+ for the highest UC luminescence were verified to be 10/15 mol%, and a possible UC mechanism that depends on the pumping power is discussed in detail.  相似文献   

14.
《Ceramics International》2015,41(8):9910-9915
To obtain warm white-light emission, a series of Ca9MgNa(PO4)7:Sr2+, Mn2+, Ln (Ln=Eu2+, Yb3+, Er3+, Ho3+, and Tm3+) phosphors were designed and their photoluminescence properties under near-ultraviolet and near-infrared excitation were studied. For near-ultraviolet excitation, blue-white emission is produced initially in the Eu2+ single-doped Ca9MgNa(PO4)7, whose excitation band can well match with the near ultraviolet LED chip. By introducing Sr2+ ions into Ca9MgNa(PO4)7:Eu2+, the Eu2+ emission band beyond 500 nm is enhanced obviously. Correspondingly, the emitting light color is tuned to nearly white. To generate warm white light further, Mn2+ is doped into the Ca8.055MgNa(PO4)7:0.045Eu2+, 0.9Sr2+ and the correlated color temperature is decreased largely. For near-infrared excitation, the green, red, and blue emissions have been obtained in the Yb3+-Er3+, Yb3+-Er3+, and Yb3+-Er3+ co-doped Ca9MgNa(PO4)7 phosphors, respectively. And warm white light is also produced in the Ca9MgNa(PO4)7:Yb3+, Er3+, Ho3+, Tm3+ under 980 nm excitation.  相似文献   

15.
SrIn2O4, which shows lower phonon energy than CaIn2O4, is not only a good photocatalyst but also can be an excellent up‐conversion (UC) host to exhibits UC luminescence. In this work, Yb3+ and/or Er3+ doped SrIn2O4 phosphors were synthesized, and their UC luminescence properties were studied and compared with those in the CaIn2O4 host. The structure of SrIn2O4: 0.01Er3+ and SrIn2O4: 0.1Yb3+/0.01Er3+ samples were refined by the Rietveld method and found to that SrIn2O4: 0.1Yb3+/0.01Er3+ showed increasing unit cell parameters and cell volume, indicating In3+ sites were substituted successfully by Yb3+ and/or Er3+ ions. From the UC luminescence spectra and diffuse reflection spectra, Er3+‐doped SrIn2O4 showed very weak luminescence due to ground state absorption of Er3+; Yb3+/Er3+ codoped SrIn2O4 presented strong green (550 nm) and red (663 nm) UC emissions which were assigned to energy transfer from Yb3+ transition 2F7/22F5/2 to the Er3+ transition 4S3/24I15/2 and 4F9/24I15/2. Comparing with CaIn2O4, Yb3+/Er3+ codoped SrIn2O4 showed obvious advantages with higher UC luminescent intensity. The pumping powers study showed that UC emissions in Yb3+/Er3+ codoped SrIn2O4 were attributed to energy transfer of Yb3+→Er3+ with a two‐photon process. The possible UC luminescent mechanism of Yb3+/Er3+‐doped SrIn2O4 was discussed.  相似文献   

16.
Garnet-type Li6Ca(La0.97Yb0.02RE0.01)2Nb2O12 (RE = Ho, Er, Tm) new phosphors were successfully synthesized via solid reaction at 900°C for 5 hours, whose course of phase evolution, macroscopic/local crystal structure and up-/down-conversion (UC/DC) photoluminescence were clarified. Mechanistic study and materials characterization were attained via XRD, Rietveld refinement, DTA/TG, electron microscopy (FE-SEM/TEM), and Raman/reflectance/fluorescence spectroscopies. The phosphors were shown to exhibit UC luminescence dominated by a ~ 553 nm green band (5F4/5S2 → 5I8 transition) for Ho3+, a ~ 568 nm green band (4S3/2 → 4I15/2 transition) for Er3+ and a ~ 806 nm near-infrared band (3H4 → 3H6 transition) for Tm3+ under 978 nm laser excitation, with CIE chromaticity coordinates of around (0.31, 0.68), (0.38, 0.60) and (0.17, 0.24), respectively. Analysis of the pump-power dependence of UC intensity indicated that all the emissions involve a two-photon mechanism except for the ~ 486 nm blue emission of Tm3+ (1G4 → 3H6), which requires a three-photon process. The DC luminescence of these phosphors is featured by dominant bands at ~ 553 nm for Ho3+ (green, 5F4/5S2 → 5I8 transition), ~568 nm for Er3+ (green, 4S3/2 → 4I15/2 transition) and ~ 464 nm for Tm3+ (blue, 1D2 → 3F4 transition). The UC and DC properties were also comparatively discussed.  相似文献   

17.
《Ceramics International》2020,46(11):18614-18622
Studies on lanthanide ions doped upconversion nanomaterials are increasing exponentially due to their widespread applications in various fields such as diagnosis, therapy, bio-imaging, anti-counterfeiting, photocatalysis, solar cells and sensors, etc. Here, we are reporting upconversion luminescence properties of NaBi(MoO4)2:Ln3+, Yb3+ (Ln = Er, Ho) nanomaterials synthesized at room temperature by simple co-precipitation method. Diffraction and spectroscopic studies revealed that these nanomaterials are effectively doped with Ln3+ ions in the scheelite lattice. DR UV–vis spectra of these materials exhibit two broad bands in the range of 200–350 nm correspond to MoO42− charge transfer, s-p transition of Bi3+ ions and sharp peaks due to f-f transition of Ln3+ ions. Upconversion luminescence properties of these nanomaterials are investigated under 980 nm excitation. Doping concentration of Er3+ and Yb3+ ions is optimized to obtain best upconversion photoluminescence in NaBi(MoO4)2 nanomaterials and is found to be 5, 10 mol % for Er3+, Yb3+, respectively. NaBi(MoO4)2 nanomaterials co-doped with Er3+, Yb3+ exhibit strong green upconversion luminescence, whereas Ho3+, Yb3+ co-doped materials show strong red emission. Power dependent photoluminescence studies demonstrate that emission intensity increases with increasing pump power. Fluorescence intensity ratio (FIR) and population redistribution ability (PRA) of 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 transitions of Er3+ increases with increasing the Yb3+ concentration. Also, these values increase linearly with increasing the pump power up to 2 W. It reveal that these thermally coupled energy levels are effectively redistributed in co-doped samples due to local heating caused by Yb3+.  相似文献   

18.
La2O2CN2:Er3+and La2O2CN2:Er3+/Yb3+ upconversion (UC) luminescence nanofibers were successfully fabricated via cyanamidation of the respective relevant La2O3:Er3+ and La2O3:Er3+/Yb3+ nanofibers which were obtained by calcining the electrospun composite nanofibers. The morphologies, structures, and properties of the nanofibers are investigated. The mean diameters of La2O2CN2:Er3+ and La2O2CN2:Er3+/Yb3+ nanofibers are 179.46 ± 12.58 nm and 198.85 ± 17.07 nm, respectively. It is found that intense green and weak red emissions around 524, 542, and 658 nm corresponding to the 2H11/24I15/2, 4S3/24I15/2, and 4F9/24Il5/2 energy levels transitions of Er3+ ions are observed for La2O2CN2:Er3+ and La2O2CN2:Er3+/Yb3+ nanofibers under the excitation of a 980‐nm diode laser. Moreover, the emitting colors of La2O2CN2:Er3+ and La2O2CN2:Er3+/Yb3+ nanofibers are all located in the green region. The upconversion luminescent mechanism and formation mechanism of the nanofibers are also proposed.  相似文献   

19.
《Ceramics International》2023,49(13):21932-21940
Due to the non-contact and high sensitivity, optical thermometry based on rare earth doped phosphors has been paid much attention to. Herein, dual-mode optical thermometers are designed using up-conversion luminescence of Er3+/Ho3+-Yb3+ doped LaNbO4 phosphors, which were synthesized for the first time by high-temperature solid-state reaction method. The LaNbO4:1Er3+:10Yb3+ and LaNbO4:1Ho3+:10Yb3+ phosphors exhibit reliable and excellent thermometric performance by combining fluorescence intensity ratio and decay lifetime for self-calibration. Specifically, the maximal relative sensitivities based on fluorescence lifetime were 0.27 %K−1 and 0.33 %K−1 for LaNbO4:1Er3+:10Yb3+ and LaNbO4:1Ho3+:10Yb3+ phosphors, respectively. The maximal relative sensitivity is 1.12 %K−1 when using intensity ratio between thermal coupling energy levels in LaNbO4:1Er3+:10Yb3+ as a detecting signal. Furthermore, the maximal relative sensitivity reaches as high as 0.98 %K−1 when taking advantage of special non-thermal coupling energy levels in LaNbO4:1Ho3+:10Yb3+. These results indicate that Er3+/Ho3+-Yb3+ doped LaNbO4 phosphors possess great potential in self-calibrated optical thermometric techniques.  相似文献   

20.
《Ceramics International》2023,49(19):31077-31086
Thermal quenching that the upconversion (UC) luminescence intensities decrease with increasing temperature limits the application of UC luminescence materials in the field of optical temperature sensing. Herein, we report that Tm3+/Yb3+ doped Gd2O3 phosphors achieve thermal enhancement of UC luminescence with the multiphonon assisted process. Significantly, a possible mechanism of Yb3+ ions in thermal enhancement and multiphonon assisted UC luminescence process is proposed. Based on the luminescence intensity ratio technique of non-thermally coupled energy levels, research shows that thermal enhancement can effectively improve the optical temperature sensing absolute sensitivity. Owing to the near-infrared excitation and strong near-infrared emission, the UC luminescence of the Gd2O3: Tm3+/Yb3+ phosphors can penetrate 12 mm pork tissue and achieve UC thermal enhancement in 287-314 K after penetrating 6 mm pork tissue, which shows its potential in vivo application. The results not only provide a pathway to realize the thermal enhancement of UC luminescence and the improvement of the temperature sensing sensitivity, but also promote the understanding and utilization of the UC luminescence thermal enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号