首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
《Food Hydrocolloids》2007,21(5-6):943-952
The subject of the present paper was to investigate the possibility of stabilising water-in-oil-in-water emulsions (W/O/W) by using sodium caseinate (SC)–dextran (Dex) conjugates in order to influence the release of vitamin B12 from the inner water phase (W1) to the outer aqueous phase (W2).To prepare the conjugate the SC was combined with Dex (Mr 250,000 or 500,000 g/mol) and incubated at 60 °C and a humidity of 79% for 8 h.The double emulsions, with encapsulated vitamin B12, were prepared using a two-step emulsification technique. Whereas different amounts of polyglycerin polyricinoleate (PGPR, E476) were the hydrophobic emulsifier, the conjugate and the SC alone were used as the hydrophilic emulsifiers. The investigations comprised the determination of the particle size distribution of the W/O/W emulsion and measurement of the amount of vitamin B12 migration from W1- to the W2-phase during the second stage of emulsion preparation and after heating or pH changing of emulsion.The water-containing oil droplets of the W/O/W emulsions were smaller and distributed more narrowly using SC–Dex conjugate as emulsifier instead of pure protein. Under acidic conditions, the conjugate-containing emulsions were more coalescence stable than the emulsions with SC, and the vitamin B12 release from the inner W1-phase was significantly decreased.  相似文献   

2.
We investigated the molecular characteristics of 4-α-glucanotransferase (4αGTase)-modified rice starch (MRS) and corn starch (MCS) gels and the NaCl release properties depending on their mechanical properties. Also, encapsulation efficiency (EE) and oil globule size of water-in-oil-in-water (W/O/W) emulsions containing MRS or MCS in the inner aqueous phase (W1) with NaCl as a model core material were measured after preparation and 14 days of storage. The characteristics of MRS and MCS were examined by analyzing amylose content, molecular fine structure, microstructure, and mechanical properties to better understand their associations with emulsion stability. At 20 % concentration, the gel strength of MCS (~105 pa) was greater than that of MRS (~103 pa) as MCS had higher apparent amylose content than MRS. The rate of NaCl release from the gel was highly correlated with the gel strength that depended on the type and concentration of the enzymatically-modified starch. As the gel strength increased, EE of freshly prepared and stored W/O/W emulsions increased. Osmotic swelling of NaCl-containing W/O/W was significantly reduced with the incorporation of the modified starch gels in W1 phase. These results indicated that physicochemical properties of 4αGTase-modified starch gels in W/O/W emulsions largely affected the encapsulation efficiency and stability of the emulsions, which could be utilized to formulate W/O/W emulsions with improved stability and the potential for broader applications.  相似文献   

3.
A new in vitro mechanical gastric system (IMGS) was fabricated which incorporates: a J-shaped stomach, a mechanical system with realistic peristaltic frequency and force magnitude, and a reproduction of the gastric pH curve. To evaluate the impact of a more realistic gastric peristalsis on the intestinal lipolysis of protein-stabilized O/W emulsions, the emulsions were subjected to two different in vitro digestion methodologies: (i) gastric digestion in the IMGS and intestinal digestion in a stirred beaker (SB), and (ii) gastric and intestinal digestion assays carried out in SBs. At the end of the intestinal digestion, the total amount of free fatty acids released was significantly higher for the first methodology (IMGS-SB) in comparison with the second one (27.5% vs. 23.0%), probably due to the higher physical instability induced by the IMGS in the gastric contents. These results reaffirm that O/W emulsion stability plays a crucial role in controlling the final extent of lipolysis of this kind of food-grade emulsions.  相似文献   

4.
Water-soluble soybean polysaccharide (SSPS) is a naturally occurring emulsifier. SSPS was used as the sole emulsifier to stabilize an oil-in-water (O/W) emulsion. The effects were investigated of different SSPS concentrations (3–20% (w/w)) on the lipid digestibility, rheological properties and stability of O/W emulsions during in vitro digestion model. The droplet size of the emulsions tended to increase during the oral phase because the emulsions were unstable and droplets coalesced, except with a SSPS concentration of 20% (w/w). The presence of SSPS markedly reduced the free fatty acid (FFA) content after its stabilized O/W emulsion passed through in vitro gastrointestinal digestion. The amount of FFA significantly decreased as the concentration of SSPS increased due to SSPS stabilization film on oil droplet surface and high viscous system. SSPS may be an attractive alternative ingredient to control the lipid digestibility of emulsions for various food products.  相似文献   

5.
《Food chemistry》1999,66(3):327-331
This paper reports viscosity measurements of oil/water (O/W) monodispersed emulsions of different droplet diameters obtained in a membrane emulsification system. Hydrophilic microporous glass membranes of different pore diameters were used to prepare O/W emulsions. The results showed that the droplet diameter of the emulsions varied with the average pore diameter of the membrane. The average droplet diameter was found to be about five times greater than the average membrane pore diameter. A correlation was found for the relationship between the average droplet diameter and the emulsion viscosity. As the dispersed droplet size became smaller, the total surface area of the droplets increased. Therefore, the emulsion viscosity and the relative viscosity increased. Few studies have reported the viscosity of O/W emulsions with droplet diameter of 5 μm or more and an oil phase concentration of 10 vol% or less. In the present study a correlation between the droplet diameter and the emulsion viscosity was statistically established. ©  相似文献   

6.
Whey protein concentrate (WPC) was oxidized by peroxyl radicals derived from 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) and the kinetics of droplet stability in O/W and W/O emulsions stabilized by oxidized WPC were evaluated by studying the micro-rheology. Degrees of protein oxidation were indicated by carbonyl concentration and emulsion types were distinguished by fluorescence microscopy. Oxidation resulted in free sulfhydryl groups degradation and surface hydrophobicity decrease. Moderate protein oxidation promoted to form diminutive droplets, which aggregated quickly to gel-network structure and decreased the motion rate of droplets, leading to the increased elasticity and viscosity, which led to better stability. Over-oxidation underwent severe droplet aggregation and sediment with increased motion rate, which resulted in instability of emulsions. The W/O emulsions of oxidized WPC were more inclined to block the motion of droplets and form a stable structure with higher viscosity, compared with the O/W emulsions.  相似文献   

7.
Mangiferin (MGF) is a phenolic compound isolated from mango, but its poor solubility significantly limits its use. In this study, MGF was embedded into the inner aqueous phase of W1/O/W2 emulsions. Firstly, the dissolution method of MGF was determined. MGF remained stable in solution with pH 13 at 30 min, and its solubility reached 10 mg mL−1. When the pH of MGF solutions was adjusted from pH 13 to pH 6, MGF did not immediately crystallise, providing sufficient time to construct the MGF-loaded W1/O/W2 emulsions. Subsequently, the MGF-loaded W1/O/W2 emulsions were constructed using polyglycerol polyricinoleate (PGPR) and calcium caseinate (CAS). The formation and stability of the W1/O/W2 emulsions were investigated. The MGF-loaded W1/O/W2 emulsions stabilised with 1% PGPR and 1% – 3% CAS exhibited a low viscosity, limited loading capacity, and poor stability. Conversely, the MGF-loaded W1/O/W2 emulsions stabilised by 3%PGPR–3%CAS exhibited optimal loading capacity (encapsulation efficiency = 95.31% and loading efficiency = 0.91%) and stability, which was attributed to the fact that high viscosity and gel state retarded the migration of inner aqueous phase. These results indicated that the W1/O/W2 emulsions stabilised by PGPR and CAS may be a potential alternative for encapsulating mangiferin.  相似文献   

8.
为对比不同米糠蛋白质量浓度下O/W及W/O/W乳液的稳定性,以米糠蛋白作为基料,采用双乳化法制备O/W及W/O/W乳液,考察不同米糠蛋白质量浓度下乳液的微观形态和稳定性并探究其界面稳定机理。结果表明:W/O/W乳液的贮存稳定性显著优于O/W乳液;与相同蛋白含量的O/W乳液相比,W/O/W乳液的黏度显著提高;当米糠蛋白质量浓度为0.4 g/100 mL时,W/O/W乳液的稳定性较O/W乳液提高了1 倍以上;乳液内部包裹更多的W/O液滴,W/O/W乳液的粒径较大;而此时静电斥力也较大,起到稳定乳液的目的。同时,米糠蛋白质量浓度不小于0.4 g/100 mL时,O/W及W/O/W乳液中蛋白质的吸附率较高,达到78%以上。本研究为天然米糠蛋白质在食品级乳液中的开发提供参考,为粮食副产物的综合利用提供了新思路。  相似文献   

9.
In this work, formulation and characterization of oil-in-water (O/W) emulsions loaded with rutin were successfully overhead. We investigated the effect of homogenization pressure on the mean droplet size, droplet size distribution, physical stability, and rutin retention of these emulsions. O/W emulsions with a mean droplet size (d 3,2) of about 150 nm and a span of nearly the unit were formulated by microfluidization at the homogenization pressure 20–150 MPa. The O/W emulsion droplets loaded with rutin were physically stable in terms of variations of d 3,2 and span during 30 days of storage in the dark condition at 4 and 25 °C. The creaming velocity was characterized using centrifugal method showing a relative good shelf life. HPLC analysis demonstrated that 71–85% of initial rutin was retained in the fresh O/W emulsions and declined to 22–35% (w/w) for 30-day storage at 25 °C. Antioxidant activity assays confirmed that rutin-loaded emulsion participated in the antioxidant activity after encapsulation similarly to pure rutin. These results indicate that O/W emulsion systems can function as potential delivery systems to enhance bioavailability to encapsulate liposoluble antioxidant rutin for potential applications in the food industry.  相似文献   

10.
The emulsifying properties of collagen fibers were evaluated in oil-in-water (O/W) emulsions produced under different conditions of pH, protein content and type of emulsification device (rotor–stator and high-pressure homogenizer). The stability, microstructure and rheology of the O/W emulsions were measured. The phase separation and droplet size of the emulsions prepared using the rotor–stator device (primary emulsion) decreased with protein concentration and reduction in pH, allowing the production of electrostatically stable emulsions at pH 3.5. In contrast, emulsions at higher pH values (4.5, 5.5 and 7.5) showed a microscopic three-dimensional network responsible for their stability at protein contents higher than 1.0% (w/w). The emulsions at pH 3.5 homogenized by high pressure (up to 100 MPa) showed a decrease in surface mean diameter (d32) with increasing pressure and the number of passes through the homogenizer. These emulsions showed droplets with lower dispersion and d32 between 1.00 and 4.05 μm, six times lower than values observed for primary emulsions. The emulsions presented shear-thinning behavior and lower consistency index and viscosity at higher homogenization pressures. In addition, the emulsions showed a less structured gel-like behavior with increase in homogenization pressure and number of passes, since the pressure disrupted the collagen fiber structure and the oil droplets. The results of this work showed that the collagen fiber has a good potential for use as an emulsifier in the food industry, mainly in acid products.  相似文献   

11.
The potential food applications of water-in-oil-in-water (W1/O/W2) double emulsions are great, including the encapsulation of flavours or active ingredients. However, the stability of these emulsions restricts their applications in food systems. Sodium caseinate (NaCN)–maltodextrin (Md40 or Md100) conjugates were investigated for their potential to improve the stability of W1/O/W2 double emulsions compared to NaCN. NaCN–Md40 and NaCN–Md100 conjugates were prepared by a Maillard-type reaction by dry heat treatment of mixtures of NaCN–Md40 or NaCN–Md100 at 60 °C and 79% relative humidity for 4 days. Water-in-oil-in-water (W1/O/W2) double emulsions with NaCN, NaCN–Md40 or NaCN–Md100 as outer aqueous phase containing emulsifier were prepared using a two-step emulsification process. General emulsion stability was characterised by determining the droplet size distribution, viscosity characteristics and by confocal microscopy of the W1/O/W2 double emulsions on formation and after their storage under accelerated shelf life testing conditions at 45 °C for up to 7 days. Inner phase encapsulation and stability were characterised by monitoring the level of entrapped Vitamin B12 in the inner aqueous phase on formation of the double emulsions and after storage at 45 °C for up to 7 days. Conjugate stabilized emulsions were more generally stable than NaCN stabilized emulsions. In comparison to NaCN stabilized emulsions, conjugate stabilized emulsions showed improved Vitamin B12 encapsulation efficiency in the inner aqueous phase on emulsion formation and improved encapsulation stability following storage of the emulsions.  相似文献   

12.
Iron (Fe3+) was encapsulated within the internal aqueous phase of water-in-oil-in-water (W/O/W) emulsions, and then the impact of this iron on the oxidative stability of fish oil droplets was examined. There was no significant change in lipid droplet diameter in the W/O/W emulsions during 7 days storage, suggesting that the emulsions were stable to lipid droplet flocculation and coalescence, and internal water diffusion/expulsion. The initial iron encapsulation (4 mg/100 g emulsion) within the internal aqueous phase of the water-in-oil (W/O) emulsions was high (>99.75%), although, a small amount leaked out over 7 days storage (≈10 μg/100 g emulsion). When W/O/W emulsions were mixed with fish oil droplets the thiobarbituric acid-reactive substances (TBARS) formed decreased (compared to fish oil droplets alone) by an amount that depended on iron concentration and location, i.e., no added iron < iron in external aqueous phase < iron in internal aqueous phase. These differences were attributed to the impact of W/O droplets on the concentration and location of iron and lipid oxidation reaction products within the system.  相似文献   

13.
The aim of this paper was to prepare and characterise multiple emulsions and assess their utility as pork backfat replacers in meat gel/emulsion model systems. In order to improve the fat content (in quantitative and qualitative terms) pork backfat was replaced by a water-in-oil-in-water emulsion (W1/O/W2) prepared with olive oil (as lipid phase), polyglycerol ester of polyricinoleic acid (PGPR) as a lipophilic emulsifier, and sodium caseinate (SC) and whey protein concentrate (WP) as hydrophilic emulsifiers. The emulsion properties (particle size and distribution, stability, microstructure) and meat model system characteristics (composition, texture, fat and water binding properties, and colour) of the W1/O/W2, as affected by reformulation, were evaluated. Multiple emulsions showed a well-defined monomodal distribution. Freshly prepared multiple emulsions showed good thermal stability (better using SC) with no creaming. The meat systems had good water and fat binding properties irrespective of formulation. The effect on texture by replacement of pork backfat by W1/O/W2 emulsions generally depends on the type of double emulsion (associated with the hydrophilic emulsifier used in its formulation) and the fat level in the meat system.  相似文献   

14.
Soluble fibers, like pectin, are known to influence the physicochemical processes during the digestion of dietary fat and may therefore affect the absorption of lipophilic micronutrients such as carotenoids. The objective of the current work was to investigate whether the pectin concentration and degree of methyl-esterification (DM) influence the bioaccessibility of carotenoids loaded in the oil phase of oil-in-water emulsions. The in vitro β-carotene bioaccessibility was determined for different oil-in-water emulsions in which 1 or 2% citrus pectin with a DM of 99%, 66% and 14% was present. Results show that pectin concentration and DM influence the initial emulsion properties. The most stable emulsions with the smallest oil droplets (D(v,0.9) of 15–16 μm) were obtained when medium or high methyl-esterified pectin was present in a 2% concentration while gel-like pectin structures (D(v,0.9) of 114 μm), entrapping oil droplets, were observed in the case where low methyl-esterified pectin was present in the aqueous emulsion phase. During in vitro stomach digestion, these gel-like structures, entrapping β-carotene loaded oil droplets, significantly enlarged (D(v,0.9) of 738 μm), whereas the emulsion structure could be preserved when the medium or high methyl-esterified pectin was present. Initial emulsion viscosity differences, due to pectin concentration and especially due to pectin DM, largely disappeared during in vitro digestion, but were still significant after the stomach digestion phase. The observed differences in emulsion structure before and during in vitro digestion only resulted in a significant difference between emulsions containing low methyl-esterified pectin (β-carotene bioaccessibility of 33–37%) and medium/high methyl-esterified pectin (β-carotene bioaccessibility of 56–62%).  相似文献   

15.
Heteroaggregated oil‐in‐water (O/W) emulsions formed by targeted combination of oppositely charged emulsion droplets were proposed to be used for the modulation of physical properties of food systems, ideally achieving the formation of a particulate 3‐dimensional network at comparably low‐fat content. In this study, rheological properties of Quillaja saponins (QS), sugar beet pectin (SBP), and whey protein isolate (WPI) stabilized conventional and heteroaggregated O/W emulsions at oil contents of 10% to 60% (w/w) were investigated. Selected systems having an oil content of 30% (w/w) and different particle sizes (d43 ≤ 1.1 or ≥16.7 μm) were additionally subjected to chemical (genipin or glutaraldehyde) and thermal treatments, aiming to increase network stability. Subsequently, their rheological properties and stability were assessed. Yield stresses (τ0) of both conventional and heteroaggregated O/W emulsions were found to depend on emulsifier type, oil content, and initial droplet size. For conventional emulsions, high yield stresses were only observed for SBP‐based emulsions (τ0,SBP approximately 157 Pa). Highest yield stresses of heteroaggregates were observed when using small droplets stabilized by SBP/WPI (approximately 15.4 Pa), being higher than those of QS/WPI (approximately 1.6 Pa). Subsequent treatments led to significant alterations in rheological properties for SBP/WPI systems, with yield stresses increasing 29‐fold (glutaraldehyde) and 2‐fold (thermal treatment) compared to untreated heteroaggregates, thereby surpassing yield stresses of similarly treated conventional SBP emulsions. Genipin‐driven treatments proved to be ineffective. Results should be of interest to food manufacturers wishing to design viscoelastic food emulsion based systems at lower oil droplet contents.  相似文献   

16.
Water-in-oil-in-water (W/O/W) double emulsions are systems where a water-in-oil emulsion (W/O) is dispersed in a second aqueous phase. The W/O emulsion exists in the suspending aqueous medium as oil globules containing smaller water droplets.
In this work, a selection of both materials and procedures has been made in order to obtain an optimal formulation of a W/O/W food emulsion for both yield and rheologica] properties.
The rheological properties of W/O/W emulsions have been studied by means of both steady-shear and oscillatory measurements, and appeared to be similar to those of a simple O/W emulsion having the same volume fraction of dispersed phase, but lower oil content.
This is of great interest to the food industry, since producing double emulsions with the same texture as simple ones, but a lower oil content, helps to formulate reduced-calorie foods.  相似文献   

17.
The effect of heteroaggregation of oppositely charged protein microspheres dispersed within a liquid oil phase on the microstructure and rheological properties of water-in-oil (W/O) emulsions was evaluated. The aqueous phase of the initial W/O emulsions contained either 10% β-lactoglobulin or 10% lactoferrin (pH 7, 100 mM NaCl). At this pH, β-lactoglobulin (BLG) is negatively charged while lactoferrin (LF) is positively charged. The oil phase consisted of a lipophilic non-ionic surfactant (8% polyglycerol polyricinoleate, PGPR) dispersed within soybean oil. Three 40% W/O emulsions were formed containing different types of protein microspheres: (i) BLG: 100% BLG droplets; (ii) LF: 100% LF droplets; and (iii) Mixed: 50% BLG droplets and 50% LF droplets. Prior to heating, the mixed emulsions had a higher shear viscosity, yield stress, and shear modulus than the BLG or LF emulsions, which suggested that electrostatic attraction led to the formation of a three-dimensional network of aggregated droplets. All three W/O emulsions underwent an irreversible fluid-to-solid transition when they were heated above ≈70 °C. This phenomenon was attributed to thermal denaturation of the globular BLG and LF molecules within the aqueous phase promoting aggregation and network formation of the protein microspheres. After heating, the mixed emulsions had a higher shear viscosity, yield stress and shear modulus than the BLG or LF emulsions, suggesting that a stronger droplet network was formed due to electrostatic attraction. Shear rheology measurements of the W/O emulsions showed that the lipid phases formed after heating were non-ideal plastics characterized by a yield stress and shear thinning behavior. These results may facilitate the design of semi-solid or solid foods with reduced saturated- or trans-fat contents suitable for use in commercial products.  相似文献   

18.
Water-in-oil-in-water (W/O/W) emulsions were formulated based on rapeseed oil, olive oil, olein and miglyol. Polyglycerol polyricinoleate and sodium caseinate were used as lipophilic and hydrophilic emulsifiers, respectively. Magnesium was encapsulated in the inner aqueous droplets. Emulsion stability was assayed through particle sizing and magnesium release at two storage temperatures (4 and 25 °C) over 1 month. Irrespective of the oil nature, both the primary W/O and W/O/W emulsions were quite stable regarding the size parameters, with 10-μm fat globules and 1-μm internal water droplets. Magnesium leakage from W/O/W emulsions was influenced by the oil type used in the formulation: the higher leakage values were obtained for the oils characterized by the lower viscosity and the higher proportion of saturated fatty acids. Magnesium release was not due to droplet–globule coalescence but rather to diffusion and/or permeation mechanisms with a characteristic rate that varied over time. In addition, W/O/W emulsions were resistant to various thermal treatments that mimicked that used in pasteurization processes. Finally, when W/O/W emulsions were placed in the presence of pancreatic lipase, the emulsion triglycerides were hydrolysed by the enzyme. These results indicated a possible use of W/O/W emulsions loaded with magnesium ions in food applications.  相似文献   

19.
Ferrous bisglycinate aqueous solution was entrapped in the inner phase (W1) of water-in-oil-in-water (W1/O/W2) multiple emulsions. The primary ferrous bisglycinate aqueous solution-in-mineral oil (W1/O) emulsion contained 15% (w/w) ferrous bisglycinate, had a dispersed phase mass fraction of 0.5, and was stabilized with a mixture of Grindsted PGPR 90:Panodan SDK (6:4 ratio) with a total emulsifiers concentration of 5% (w/w). This primary emulsion was re-emulsified in order to prepare W1/O/W2 multiple emulsions, with a dispersed mass fraction of 0.2, and stabilized using protein (whey protein concentrate (WPC)):polysaccharide (gum arabic (GA) or mesquite gum (MG) or low methoxyl pectin (LMP)) complexes (2:1 ratio) in the W2 aqueous phase. The W1/O/W2 multiple emulsion stabilized with WPC:MG (5% w/w total biopolymers concentration) provided smaller droplet sizes (2.05 μm), lower rate of droplet coalescence (7.09 × 10−7 s−1), better protection against ferrous bisglycinate oxidation (29.75% Fe3+) and slower rate of ferrous bisglycinate release from W1 to W2 (KH = 0.69 mg mL−1 min−0.5 in the first 24 h and 0.07 mg mL−1 min−0.5 for the next 19 days of storage time). Better encapsulation efficiencies, enhanced protection against oxidation and slower release rates of ferrous bisglycinate were achieved as the molecular weight of the polysaccharide making up protein:polysaccharide complex was higher. Thus, the factor that probably affected most the overall functionality of multiple emulsions was the thickness of the complex adsorbed around the multiple emulsion oil droplets. These thicknesses determined indirectly by measuring the z-average diameter of the complexes, and that of the WPC:MG (529.4 nm) was the largest.  相似文献   

20.
Li J  Ye A  Lee SJ  Singh H 《Food & function》2012,3(3):320-326
In this study, in vitro intestinal lipid digestion and the physicochemical and microstructural changes of sodium caseinate-stabilized emulsions were examined after the emulsions had been digested in a model simulated gastric fluid containing pepsin for different times. The average size, size distribution, microstructure, proteolysis of interfacial proteins and lipolysis of the emulsion droplets were monitored as a function of digestion time. The emulsion droplets underwent extensive droplet flocculation, with some coalescence together with proteolysis of interfacial proteins, in simulated gastric fluid, resulting in changes in the droplet size and the microstructure of the emulsions. In general, digestion in simulated gastric fluid containing pepsin accelerated coalescence of the emulsion droplets during subsequent digestion in simulated intestinal fluid containing pancreatic lipase. However, the changes in the size, the microstructure and the proteolysis of the interfacial proteins of the emulsions under gastric conditions did not influence the rate and the extent of lipid digestion in the subsequent intestinal environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号