首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we evaluated the effects of high hydrostatic pressure (HHP) and high pressure homogenization (HPH) treatments on the physicochemical, functional, and structural properties of dietary fibers (DFs) obtained from purple-fleshed potatoes. DFs subjected to HHP and HPH exhibited increased content of soluble dietary fiber. HHP and HPH treatments did not improve water holding capacity, but increased oil holding and swelling capacities, and emulsion activity and stability. DFs treated with HPH showed the increased antioxidant activities (DPPH 0.89, ABTS 2.65, FRAP 3.39 mg Trolox/g DF), content of total phenol, and α-glucosidase inhibition (98.3%). HHP and HPH treatments changed monosaccharide compositions and structural characteristics of DFs. Therefore, DFs from purple-fleshed potatoes could be used as a fiber-rich ingredient in functional foods, and HPH was more useful in the modification of dietary fiber than HHP at the same treatment conditions.Industrial relevance: This article deals with the modification of dietary fibers from purple-fleshed potatoes (Heimeiren) with HHP and HPH treatments. Results suggest that HPH treated dietary fiber showed a higher ratio of soluble fraction, increased physicochemical and functional properties than HHP at 200 MPa. There outcomes could help the food industry identify the optimal high pressure processing type to improve physicochemical and functional properties of dietary fiber.  相似文献   

2.
本实验比较竹笋膳食纤维、米糠膳食纤维和大豆膳食纤维的功能和理化特性,结果显示竹笋膳食纤维 的持水性、持油性、膨胀性、对NO2-和胆固醇的吸附能力分别为17.85 g/g、10.14 g/g、9.63 mL/g、4.82 μmol/g和 6.88 mg/g,均远高于米糠膳食纤维和大豆膳食纤维。研究不同竹笋膳食纤维添加量对冷冻面团流变学特性、水分分 布以及微观结构的影响,结果发现竹笋膳食纤维的添加使得冷冻面团的弹性模量和黏性模量得到提高;竹笋膳食纤 维改变了冷冻面团的水分分布,显著缩短冷冻面团峰T22的弛豫时间,增强了面团的持水能力;扫描电子显微镜观 察发现,竹笋膳食纤维改变了冷冻面团的微观结构,使其淀粉颗粒与面筋网络排列更加均匀。本研究将为竹笋膳食 纤维对冷冻面团的改良提供理论依据。  相似文献   

3.
We assessed the impact of stirring (ST), high shear dispersing (HSD) and low (LPH, 3.5 MPa) and high pressure homogenization (HPH, 50 MPa) on physicochemical and structural characteristics of whole and skimmed sheep milk fresh or previously frozen and thawed (FT). Freezing affected the size of the fat globules, their interaction with caseins, reduced calcium solubility (10%) and buffering capacity (5–11%). Amongst the studied processes, HSD was the only one unable to improve the milk stability. The other ones reduced the size of the fat globules and increased fat and casein interactions, favoring milk stability and reducing the creaming occurrence (>22%). LPH and HPH also reduced the sedimentation in skimmed milk (>37%). Moreover, all processes recovered the buffering capacity of FT samples. The effectiveness of the processes can be ordered as ST < LPH < HPH, but the final choice will depend on the stability improvement required for milk vs. acquisition and operational equipment costs.Practical applicationSheep milk is normally not homogenized because it has a lower fat globule size than cow milk, which reduces the creaming occurrence. However, creaming happens in some instances and it can be intensified if the milk is preserved frozen (to accumulate enough volume) prior to the dairy production, causing defects in the final products (mainly yogurts). The studied physical processes can be strategically used to solve this problem, increasing the milk emulsion stability, reducing the sedimentation occurrence and changing the buffering capacity to reach the same value of fresh milk.  相似文献   

4.
汪楠  黄山  张月  郑炯 《食品工业科技》2020,41(12):353-357
改性技术对竹笋膳食纤维(Bamboo shoot dietary fiber,BSDF)理化性质和生理功能的影响是BSDF开发利用的研究重点。本文概述了BSDF的理化性质,总结了生物酶、发酵、挤压、超微粉碎、超声波、微波、高速剪切、微胶囊化、高温蒸煮及动态高压微射流等技术对BSDF的影响,分析了BSDF开发利用不足和目前BSDF加工技术研究存在的问题,对利用现代加工技术和理论高效制备BSDF的研究方向进行展望,为BSDF产品的开发利用及其工业化生产提供参考。  相似文献   

5.
高温蒸煮协同纤维素酶改性竹笋膳食纤维   总被引:5,自引:0,他引:5  
以竹笋膳食纤维(bamboo shoot dietary fiber,BSDF)为研究对象,分别采用纤维素酶酶解(ET)、高温蒸煮(HT)、高温蒸煮协同纤维素酶(ET-HT)处理BSDF,分析其结构和理化性质(持水力、膨胀力、持油力、色泽)的变化。结果表明,改性后BSDF的粒径均显著减小(P <0. 05),ET-HT40组BSDF的粒径((423±23. 7) nm)最小,改性处理后的BSDF的电位均显著下降(P <0. 05)。ET-HT处理后BSDF呈片状结构,ET-HT组BSDF的L*值(54. 26±0. 64)和b*值(18. 41±0. 29)最小,a*值(9. 63±0. 17)最大。ET-HT20组BSDF的持水力((5. 29±0. 17) g/g)和膨胀力((13. 22±0. 12) mL/g)最大,ET-HT40组BSDF的持油力((8. 35±0. 03) g/g)最大。热重分析表明ET-HT处理BSDF的热稳定性最强。红外光谱表明ET、HT和ET-HT改性后BSDF的主要官能团结构未发生改变。综上,ET-HT较单独ET和HT更有效地改善了BSDF的理化性质,是提升BSDF品质的有效方式。  相似文献   

6.
In this study, high-pressure homogenization (HPH) technique was applied for the pretreatment of Bangia fusco-purpurea, and the effect of HPH on the composition, physiochemical and functional properties, and in vitro anti-glycation activity of dietary fiber from this seaweed (B. fusco-purpurea dietary fiber, BDF) was studied. Results showed that HPH significantly increased water-soluble dietary fiber (SDF) content in BDF. Water-holding capacity, oil-holding capacity, and glucose delay dialysis index of BDF were significantly enhanced after HPH treatment. Additionally, HPH significantly improved the in vitro anti-glycation activity of BDF by inhibiting the formation of advanced glycation end products (AGEs) and mitigating damage induced by AGEs on intestinal cells. These improvements could be attributed to the formation of the coarse and porous structure and greater exposure of hydroxyl groups of BDF caused by HPH treatment. These results implied the potential of HPH in seaweed processing and provided a scientific basis for the in-depth, comprehensive utilization of B. fusco-purpurea.Industrial relevanceHPH is an emerging non-thermal food processing technique with promising application potential in food industry. In this study, we found that HPH technique could significantly change the composition, improve physiochemical and functional properties and enhance anti-glycation activity of dietary fiber from seaweed B. fusco-purpurea. Our results validated the efficiency of HPH on dietary fiber modification, implying the potential of HPH in food industry and healthy industry.  相似文献   

7.
The changes in partially skimmed milk (0.5% fat) physicochemical properties and proteins after high‐pressure homogenisation (HPH) at 100, 200 and 300 MPa were investigated. Processing parameters and changes in pH, ethanol precipitation stability, lightness, whey protein denaturation, hydrophobicity and viscosity were evaluated. No significant differences were found between milk pH and nonprotein nitrogen content before and after HPH. Ethanol stability, lightness and hydrophobicity increased when pressure was increased from 100 MPa to 300 MPa. Whey protein denaturation, evaluated through noncasein nitrogen, occurred only at 200 to 300 MPa, and viscosity increased just at 300 MPa. Therefore, HPH changed some milk physicochemical characteristics, mainly those related to protein content. These results highlight that HPH processing is a promising technology to improve partially skimmed milk mouth feel being suitable for dairy products manufacturing.  相似文献   

8.
Effects of carboxymethylation, hydroxypropylation and dual-enzyme hydrolysis combined with heating on in vitro hypoglycaemic properties of coconut cake dietary fibre (CCDF) were studied. Results showed that all the three modification methods could effectively improve (P < 0.05) the glucose-adsorption ability (GAA), glucose dialysis retardation index (GDRI), α-glucosidase and α-amylase inhibition activity of CCDF. The highest GAA (4.45–4.93 mm  g−1), GDRI (85.09–86.94% mm  g−1) and α-glucosidase inhibition activity (16.39–19.37%) were found on CCDFs modified by hydroxypropylation and carboxymethylation, attributed to the increased soluble dietary fibre content, viscosity and water retention and swelling capacity. Moreover, CCDF treated by enzymatic hydrolysis combined with heating demonstrated the highest α-amylase inhibition activity (53.95%), attributed to the high specific surface area, more porous surface structure and formation of fibre–amylase complex proved by fluorescence spectroscopy. These results suggest that the modified CCDFs could be used as low-calorie functional ingredients in food or other industries.  相似文献   

9.
The main purpose of this work was to investigate the influence of high-pressure homogenization (HPH, 60, 90, and 120 MPa, three cycles) combined with ultrasound (US, 120, 360, and 600 W, 30 min) on the physiochemical, interfacial, and gelation properties of whey protein isolate (WPI). Compared with an individual application of HPH or US, a combined HPH-US treatment can further reduce average particle size (D4,3) and turbidity of WPI, while significantly ameliorating its surface hydrophobicity, fluorescence intensity, and free sulfhydryl content. Compared with that of an untreated WPI, the emulsifying ability index (EAI) of WPI was increased by 8.54% after a 120 MPa HPH and by 7.63% after a 600 W US, whereas it increased by 13.97% after a combined treatment of 120 MPa and 600 W HPH-US. Accordingly, the foaming ability (FA) and the foaming stability (FS) were enhanced by 26.10% and 118.18% at 120 MPa and 600 W, respectively. The hardness of WPI gel was also increased by 170.45% at 120 MPa and 600 W compared to the untreated WPI. Therefore, the combination of HPH and US could make a remarkable improvement in the physicochemical functional characteristics of WPI, providing basic data support for the food industry to obtain excellent novel WPI ingredients.  相似文献   

10.
The effects of high pressure homogenization (HPH) and/or heat treatment on the physical, structural, thermal and morphological characteristics of zein in ethanol–water solution were investigated. The results showed that HPH significantly reduced the size of zein nanoparticles. Both of HPH and heat treatment resulted in the increase of ultraviolet absorption and fluorescence intensity, as well as the enhanced thermal stability of zein. Compared with the individual HPH and thermal treatment, the coupled treatment of heat and HPH induced more obvious changes on the secondary structure of zein with the α-helix content increasing from 49.2% to 67.1%. The morphology of zein was greatly modified from sphericity to oval, dumbbell-like and random geometrical shape after HPH at 125 MPa. The synergistic effect was found between thermal treatment and HPH at 75 MPa, which resulted in size reduction of zein nanoparticles with the spherical shape and uniform distribution.Industrial relevanceThermal treatment has been extensively applied to modify the physiochemical properties of water soluble proteins like β-lactoglobulin, lactoferrin and livetins. However, the available reports on the heat-induced structural and physicochemical changes of alcohol-soluble proteins are limited.Nowadays, the new insight into protein modification is to apply physical treatments such as high pressure homogenization (HPH). HPH has been applied to modify the physiochemical, functional and structural properties of water soluble proteins, including faba bean protein, whey proteins, peanut proteins and soy protein isolate. However, little information is available about the effect of HPH treatment on structural modifications of alcohol-soluble proteins. Besides, according to the previous literatures, the combined treatment of thermal with HPH is commonly employed to improve the stability of dairy products. Nevertheless, to our best knowledge, there is no report about the coupled treatment of thermal and HPH on the modification of ethanol-soluble protein.Results from present work can be used to confirm the hypothesis that the simultaneous treatment of thermal and HPH would be an attractive modification method for zein with better thermal behaviors and structural properties to develop new food grade materials, which could be useful in the development of the potential delivery systems for bioactive compounds.  相似文献   

11.
High pressure homogenization (HPH) is a non-thermal technology which has been widely studied as a partial or total substitute for the thermal processing of food. Although microbial inactivation has been widely studied, there are only a few papers in the literature reporting on physicochemical changes in fruit products due to HPH, especially regarding their rheological properties. The present work evaluated the effect of HPH (up to 150 MPa) on the viscoelastic properties of tomato juice. HPH increased the tomato juice storage (G′) and loss (G″) moduli. The parameters G′ and G″ were modelled as a power function of the oscillatory frequency (ω), and then evaluated as a function of homogenization pressure. It was observed that HPH processing improved tomato juice consistency more than it modified its nature/behaviour. The changes observed in the viscoelastic properties were attributed to disruption of the suspended particles during processing. Moreover, two modified Cox–Merz rules were used to correlate the products steady-state shear properties with viscoelasticity. The results obtained indicated that this process could be used to improve both product elastic and viscous behaviour, highlighting possible applications of the HPH process as a valuable tool to promote physical property changes in food products.  相似文献   

12.
Chickpeas (Cicer arietinum L) develop the hard‐to‐cook (HTC) defect during storage at high temperatures (>25 °C) and high relative humidities (RH>65%). The objective of this work was to assess the tendency of chickpea varieties to become HTC. Three samples of chickpeas (Surutato 77, Mocorito 88 and Blanco Sinaloa 92) were grown under irrigation conditions. Two hardening procedures were used: (1) storage hardening—samples were stored at 33–35 °C and 76% relative humidity for 160 days; (2) chemical hardening—materials were soaked in 0.1 M acetate buffer (pH 4.0) at 37 °C for 1–7 h. The cooking time curves generated by chemical hardening had shapes similar to those obtained by storage hardening; both procedures were equally capable of discriminating chickpea varieties based on their susceptibility to develop the HTC condition. Chemical hardening might be useful for screening new chickpea varieties; its advantage over the storage method is its rapidity. © 2001 Society of Chemical Industry  相似文献   

13.
Hydrothermal cooking (HTC) combined with amylase pretreatment (AP) was used to improve protein extraction from heat-stabilized rice bran. The physicochemical and emulsifying properties of rice bran protein isolate (RPI) were evaluated. Depending on HTC temperature (120 and 150 °C), HTC alone significantly increased extraction yield, while protein purity was decreased. In contrast, HTC combined with AP significantly improved both extraction yield and protein purity (about 45-50% and 72-74%, respectively). The AP avoided the co-precipitation of gelatinized starch during the acidic precipitation. Electrophoresis and size exclusion chromatography profiles indicated that HTC led to the dissociation of insoluble protein aggregates in rice bran, with subsequent increase of soluble aggregates in RPI, linked by non-covalent (e.g., hydrophobic interaction) and covalent bonds (disulfide bond). This result was evidenced by the increased disulfide bond contents and surface hydrophobicity of RPI. In addition, HTC-prepared RPI exhibited excellent emulsifying property.  相似文献   

14.
Some physicochemical and microstructural characteristics of hard‐to‐cook (HTC) and easy‐to‐cook (ETC) pinto beans and small‐type lentils were compared. The development of HTC seeds was monitored over 6 months for changes in physicochemical properties. Results indicated that hardness, extent of water absorption and solid loss of HTC legumes were, respectively, 21–97%, 7–72% and 62–236% higher than those of ETC legumes. In addition, darkening of HTC beans and lentils was significantly higher than those of ETC ones. Scanning electron microscope observations indicated deteriorations in cytoplasmic contents of cotyledon cells of hard seeds. Phytic acid and total phenolic contents were, respectively, decreased 36–61% and 43–61% during storage, whereas hardness of seeds was increased 3–6 times. The soaking of hard seeds in sodium solutions resulted in the improvement in legume texture.  相似文献   

15.
This study investigated the impact of bioprocessing techniques (germination, solid-state fermentation, the combination of germination, and solid-state fermentation) on the physicochemical properties, anti-nutritional and bioactive constituents, in vitro digestibility, and techno-functional properties of whole wheat grains were investigated. Bioprocessed whole wheat flour (WWF) samples and the raw flour (control) were prepared using standard procedures. Proximate, anti-nutritional, mineral and amino acid (AA) compositions, protein digestibility, antioxidant activities, starch characteristics, and techno-functional properties were studied using standard methods. The bioprocessing methods increased (p ≤ 0.05) the protein (13.37–16.84 g/100 g), total dietary fiber, mineral constituents, resistant starch (7.19–9.87 g/100 g), slowly digestible starch, phenolic content, antioxidant activities (ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), most AAs, and protein digestibility. Also observed were decreases (p ≤ 0.05) in rapidly digestible starch, phytic acid, tannin, and trypsin inhibitor activity. The adopted bioprocessing techniques modified the thermal, functional, color, and pasting properties of the WWF and resulted in molecular interactions in some functional groups, as revealed by Fourier transform infrared spectroscopy, compared to the raw flour. The combination of germination and fermentation improved the physicochemical (titratable acidity = 4.93%), protein (16.84/100 g) and starch digestibility (resistant starch = 9.87%), antioxidant (FRAP = 78.90 mg/GAE/100 g), and mineral contents (calcium = 195.28 mg/100 g), modified the pasting (peak viscosity = 90.34 RVU), thermal (peak temperature = 64.82°C), and color properties of WWF with reduced anti-nutritional factors. The combination of these processing techniques could serve as a natural and low-cost technique for the modification of whole wheat functionality and subsequently as an improved functional ingredient during food product development.  相似文献   

16.
The potential of high-pressure homogenization (HPH) to allow the production of a fermented potato protein isolate-based yogurt alternative with low and high oil concentration was investigated. The yogurt alternatives containing different oil concentrations (1.5%, 3%, and 10%) were obtained by inoculating the homogenized (0.1 MPa, 30 MPa, and 200 MPa) emulsions. HPH reduced emulsion particle size (all oil levels) compared to the non-homogenized samples (0.1 MPa). The overall emulsion whiteness index increased after HPH treatment while the highest value was obtained for 200 MPa 10% oil, 76.01 ± 0.50, compared to 65.33 ± 2.05 obtained for 0.1 MPa 10% oil. The creaming velocity was decreased by HPH, e.g., for 3% oil from 10.70 ± 0.11 (0.1 MPa) to 0.59 ± 0.04 after 200 MPa. Microscopic images of gels from HPH treated emulsions revealed smaller oil droplets and narrower component distribution. This study further highlights the possibility of HPH technology to produce plant-protein-based yogurt alternatives with different oil concentrations.Industrial relevanceIn recent years, the food industry has changed rapidly and has faced new consumer demands and global food trends. Consumers pay attention to food and its effect on their health, and the popularity of dairy alternatives with reduced-oil and, on the other hand, Greek-style yogurt analogs has grown. (Ultra) high-pressure homogenization ((U)HPH) is a continuously emerging technology that can potentially provide simultaneous homogenization and microbial inactivation and induce changes in solution physicochemical properties such as emulsion stabilization mainly by significantly reducing oil droplet size and improving interactions between emulsifiers and oil phase. By utilizing HPH, plant-based yogurt alternatives can be formed with a wide range of oil concentrations and similar texture profiles and water holding capacity, free of additional stabilizers and artificial emulsifiers. The results of this bottom-up approach study could be of great importance for considering the potential for scaling-up and future implementation of (U)HPH in the food industry to produce plant-based milk and yogurt alternatives with low and high oil content, having a clean label.  相似文献   

17.
通过提取猪肉盐溶性蛋白,添加不同比例(0%、1%、2%、3%、4%(猪肉盐溶性蛋白为100 g添加竹笋膳食纤维))的竹笋膳食纤维,应用质构仪、流变仪、低场核磁共振成像分析仪和扫描电镜测定分析竹笋膳食纤维-猪肉盐溶性蛋白形成的凝胶体系的凝胶强度、动态流变学特性、保水性、水分分布和微观结构,研究竹笋膳食纤维对凝胶体系的凝胶特性和保水性的影响。结果发现:添加竹笋膳食纤维显著增强凝胶体系的凝胶强度(P<0.05),当添加量为3%时,凝胶强度最高;随着竹笋膳食纤维添加量增加,猪肉盐溶性蛋白体系的储能模量(G’)和损失模量(G”)明显增加,凝胶体系的蒸煮损失和离心损失显著降低(P<0.05);低场核磁显示竹笋膳食纤维的添加显著提高了不易流动水的相对百分比并且降低了其弛豫时间T2(P<0.05);扫描电镜观察发现竹笋膳食纤维增加了凝胶体系的三维网络结构致密度和均一度。结果显示竹笋膳食纤维能够明显改善猪肉盐溶性蛋白的凝胶功能特性,在肉制品加工中有广阔的应用前景。  相似文献   

18.
Five different bean varieties (Phaseolus vulgaris) from Kenya, which were either freshly collected or stored for 5 years in tropical conditions (30–40°C; >75% humidity), were compared for their cooking characteristics. The beans under storage develop an irreversible phenomenon classified as ‘hard-to-cook’ (HTC) which results in undesirable characteristics limiting their acceptability. Our aims were to determine the effects of the HTC phenomenon on the proteins and antinutrient factors in these beans. Both fresh and HTC beans contained nutritionally significant amounts of lectins, trypsin and α-amylase inhibitors. HTC samples had higher lectin and lower α-amylase inhibitor contents, while the amounts of trypsin and chymotrypsin inhibitors were the same. Storage appeared to reduce water-extractable nitrogen. Fractionation with sodium dodecyl sulphate also showed that less protein may be available in HTC than fresh beans. We established that the undesirable changes in beans, such as increased cooking time, which often accompany the storage of harvested seeds under tropical conditions produce an overall decrease in soluble-N fractions, particularly proteins. The results can provide guidelines on how to utilise these seed(s) and their products. Furthermore, appropriate processing is needed to reduce their antinutrients for human nutrition.  相似文献   

19.
以新鲜豆渣为原料,探究高压均质改性和高静压改性的水溶性膳食纤维(soluble dietary fiber,SDF)得率以及改性后SDF理化性质和生理功能特性的变化。结果表明:高压均质改性在最优压力110 MPa条件下SDF得率为32.86%,高静压改性在进行高压蒸煮,最优400 MPa条件下SDF得率为7.56%,高压均质改性效果明显优于高静压改性(P<0.05);两种改性方式均能不同程度改善SDF的理化性质,促进其对胆酸和胆固醇的吸收,但降低了抗氧化效果。  相似文献   

20.
The effect of high pressure homogenization (HPH) with respect to a traditional heat treatment on the inactivation, growth at 8°C after treatments, and volatile profile of adventitious Leuconostoc strains isolated from Cremoso Argentino spoiled cheeses and ingredients used for their manufacture was evaluated. Most Leuconostoc strains revealed elevated resistance to HPH (eight passes, 100 MPa), especially when resuspended in skim milk. Heat treatment was more efficient than HPH in inactivating Leuconostoc cells at the three initial levels tested. The levels of alcohols and sulfur compounds increased during incubation at 8°C in HPH-treated samples, while the highest amounts of aldehydes and ketones characterized were in heated samples. Leuconostoc cells resuspended in skim milk and subjected to one single-pass HPH treatment using an industrial-scale machine showed remarkable reductions in viable cell counts only when 300 and 400 MPa were applied. However, the cell counts of treated samples rose rapidly after only 5 days of storage at 8°C. The Leuconostoc strains tested in this work were highly resistant to the inactivation treatments applied. Neither HPH nor heat treatment assured their total destruction, even though they were more sensitive to the thermal treatment. To enhance the inhibitory effect on Leuconostoc cells, HPH should be combined with a mild heat treatment, which in addition to efficient microbial inactivation, could allow maximal retention of the physicochemical properties of the product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号