首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2023,49(1):437-442
In this study, [001]-oriented Er-doped 0.67 Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (0.67PMN-0.33 PT) textured ceramics with different BaTiO3 (BT) template concentrations were explored. The samples were prepared by tape-casting. Er3+ was added to modify the electrical properties of the polycrystalline ceramics, and the BT template was used to improve the texture of polycrystalline ceramics. The 0.67PMN-0.33 PT textured ceramics contained coexisting rhombohedral and tetragonal phases. The ceramics became increasingly textured as the sintering temperature increased up to 1250 °C. The piezoelectric coefficient of 0.67PMN-0.33 PT with 5 wt% BT was 634 pC/N, which is 1.2 times than that of randomly oriented 0.67PMN-0.33 PT. The strain of the ceramic with 5 wt% BT increased by 12.5% relative to a random control specimen. Analysis of the electrical properties and microstructure suggested that the enhancement of the piezoelectric coefficient and strain may be caused by the addition of Er3+ and the BT template. First, the directional growth of grains along the template affected the change-of-phase distribution of the system and formed a more adaptive phase. Second, Er3+ was substitutionally doped on the A-site of the perovskite to form local heterostructures. Finally, the relaxation components of the templates and Er3+ changed in the solid solution with the matrix. The solid solution of the BT templates and Er-doped-matrix powder changed the relaxation degree, which affected the interactions at the polar nanoregions and increased the piezoelectric coefficient of the ceramics.  相似文献   

2.
《Ceramics International》2020,46(9):13324-13330
Relaxor ferroelectric 0.75 Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 (0.75PMN-0.25PT) ceramics with Mn-doping concentration of 0%, 1%, 2% and 3 mol% were prepared by two-step sintering. The phase composition, microstructure, dielectric property, ferroelectric property, piezoelectric property and electromechanical property were investigated. Results indicate that all ceramics exhibit pure perovskite phases and high density. Mn-doping induces some decrease in dielectric constant εr, dielectric loss tanδ, remnant polarization Pr, piezoelectric coefficient d33, and electromechanical coupling coefficient kp, while significant increase in mechanical quality factor Qm and the figure of merit (FOM) of 0.75PMN-0.25PT ceramics. For 3 mol% Mn-doped 0.75PMN-0.25PT ceramics, Qm enhances by 1449%, FOM increases by 923%, and tanδ decreases by 67%, which makes it more suitable for high power applications. Interestingly, double P-E loops are observed in 3 mol% Mn-doped 0.75PMN-0.25PT ceramics. The phenomenon was investigated by the symmetry-conforming principle of point defects and the internal bias field.  相似文献   

3.
Rhombohedral 0.69Pb(Zr0.47Ti0.53)‐0.31Pb(Zn0.6Ni0.4)NbO3 (PZT‐PZNN) ceramics were textured using 10.0 vol. % BaTiO3 (BT) platelets along the <001> direction at 950°C with a high Lotgering factor of 95.3%. BT platelets did not react with the PZT‐PZNN ceramics, and the textured PZT‐PZNN ceramic had a tetragonal structure. The PZT‐PZNN ceramics exhibited a strain of 0.174% with a piezoelectric strain constant (d*33) of 580 pC/N at 3.0 kV/mm. The textured PZT‐PZNN ceramic showed an increased strain of 0.276% and d*33 of 920 pC/N at 3.0 kV/mm, which can be explained by the domain rotation. However, the d33 values of the textured specimens are smaller than those of the untextured specimens because of the small remanent polarization and relative dielectric constant of BT platelets. The textured PZT‐PZNN ceramic synthesized in this work can be used for piezoelectric multilayer actuators because of its large strain and low sintering temperature.  相似文献   

4.
[001] textured 0.40BiScO3-0.60PbTiO3-0.125 mol%Nb5+ (BS-60PT-0.125Nb) high-temperature piezoelectric ceramics were synthesized using templated grain growth process. A high texture degree F001 of 99% was obtained using 2 vol% BaTiO3 (BT) templates. The piezoelectric charge constant d33 and the unipolar strain under 40 kV cm−1 at room temperature for the textured ceramics are 646 pC N−1 and 0.36%, respectively, which is over two times as those for untextured ceramics (∼243 pC N−1 and 0.17%). The electrostriction Q33 value of the textured sample remarkably increased from 0.034 m4 C−2 to 0.068 m4 C−2 under 30 kV cm−1, showing a twice higher than untextured. Compared with random ceramics, the improvement piezoelectric response of the textured ceramics is primarily attributed to the increase of the dielectric constant εr and electrostriction coefficient Q33 along [001] orientation, which is originating from the anisotropy of piezoelectricity. The BS-60PT-0.125Nb textured ceramics have large piezoelectric response and ultrahigh electrostriction with high temperature stability (high depolarization temperature Td of ∼360°C and high Curie temperature Tc of 421°C), showing great potential for the piezoelectric applications at high temperatures.  相似文献   

5.
The electrical properties of ferroelectric materials depend on their crystal orientations. The 〈001〉 and 〈111〉 textured 0.90Pb(Mg1/3Nb2/3)O3–0.10PbTiO3 (PMN-10PT) ceramics were synthesized using a template grain growth method and conventional solid sintering process. The Lotgering factors of the 〈001〉 and 〈111〉 textured PMN-10PT ceramics with 5% anisotropic BaTiO3 (BT) precursors were 95% and 87%, respectively. The influence of grain orientation direction on dielectric properties was investigated, revealing that the permittivity of textured PMN-10PT ceramics (εr〈001〉 = 12200, εr〈111〉 = 11800) was lower than that of random ceramics (εr = 18700). Electrocaloric (EC) responses of the random and textured samples were analyzed using an indirect polarization-deduced method based on Maxwell's equations. When the applied field was 50 kV cm−1, the 〈111〉 textured ceramics exhibited an enhanced adiabatic temperature change of 1.30 K, which was 20% higher than that of the random samples. In addition, the EC performance of the 〈111〉 oriented samples was significantly improved compared to that of the 〈001〉 oriented ones. This work characterizes the grain-orientation-dependent EC responses in the PMN-PT system, which would be a promising approach to EC response improvement in ferroelectric ceramics.  相似文献   

6.
Piezoelectric textured ceramics have drawn increasing research and industry interests by balancing the production cost and material performances. A new approach to realize the texture in piezoelectric ceramics is developed based on 3D printing stereolithography (SL) technique and successfully applied in the preparation of < 001 > -textured 0.71(Sm0.01Pb0.985)(Mg1/3Nb2/3)O3-0.29(Sm0.01Pb0.985)TiO3 (1 %Sm-PMN-29PT) ceramics in this work. As a critical process in texture ceramic fabrication, the alignment of BaTiO3 templates along the horizontal direction is achieved by the shear force produced from the relative motion between the resin container and the blade during SL. The textured ceramics with obvious grain orientation features are successfully obtained. The enhanced piezoelectric properties of d33 ≈ 652 pC N?1 and d33* ≈ 800 pm V?1 are achieved in the 3D printed textured ceramic, which are about 60 % and 40 %, respectively, higher than their non-textured counterparts. Moreover, the textured sample shows a significant improvement on thermal stability of d33*T, which varies by less than ± 6 % from RT to 110 °C. Furthermore, the introduction of 3D printing into the synthesis of textured piezoelectric ceramics shows great advantages over the traditional tape-casting method. This work is expected to provide a promising way for the future design of textured piezoelectric functional materials.  相似文献   

7.
Low‐temperature sintered random and textured 36PIN–30PMN–34PT piezoelectric ceramics were successfully synthesized at a temperature as low as 950°C using Li2CO3 as sintering aids. The effects of Li2CO3 addition on microstructure, dielectric, ferroelectric, and piezoelectric properties in 36PIN–30PMN–34PT ternary system were systematically investigated. The results showed that the grain size of the specimens increased with the addition of sintering aids. The optimum properties for the random samples were obtained at 0.5 wt% Li2CO3 addition, with piezoelectric constant d33 of 450 pC/N, planar electromechanical coupling coefficient kp of 49%, peak permittivity εmax of 25 612, remanent polarization Pr of 36.3 μC/cm2. Moreover, the low‐temperature‐sintered textured samples at 0.5 wt% Li2CO3 addition exhibited a higher piezoelectric constant d33 of 560 pC/N. These results indicated that the low‐temperature‐sintered 36PIN–30PMN–34PT piezoelectric ceramics were very promising candidates for the multilayer piezoelectric applications.  相似文献   

8.
Rare earth (Eu3+)-modified Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) polycrystalline ferroelectric ceramics were fabricated by high-temperature solid-state sintering, the phase structure, dielectric and piezoelectric properties were investigated. Eu3+ addition was found to significantly improve dielectric and piezoelectric properties of PMN-PT, where the optimized properties were achieved for the composition of 2.5 mol%Eu: 0.72PMN-0.28PT, with the piezoelectric d33 = 1420 pC/N, dielectric εr = 12 200 and electromechanical k33 = 0.78, respectively. All these results indicate that the Eu3+-doped PMN-PT ceramics are promising candidates for high-performance room-temperature piezoelectric devices.  相似文献   

9.
With increasing demand of high-temperature piezoelectric devices and growing concern over environment protection, a feasible reduction in lead from lead-based high Curie temperature piezoelectric materials are desperately needed. Herein, a new system of lead-reduced Bi(Ni2/3Ta1/3)O3-PbTiO3 (BNT-PT) ferroelectric ceramics is fabricated by a conventional solid-state sintering process. The phase transition behaviors as a function of composition and temperature, electrical properties, as well as the domain configurations from a microscopic level have been investigated in detail. The results indicate that crystal structures, phase transition behaviors, and electric properties of BNT-PT ceramics can be affected significantly by the content of BNT counterpart. Dielectric measurements show that xBNT-(1−x)PT ceramics transfer from the normal ferroelectrics to the relaxor ferroelectrics at compositions of x = 0.3-0.35. The BNT-PT ceramics exhibit high Curie temperature TC ranging from 474 to 185°C with the variation in BNT content. The relative dielectric tunability nr also rises from only 0.65% for 0.10BNT-0.90PT to 50.23% for 0.40BNT-0.60PT with increasing BNT content. The tetragonal-rich composition 0.30BNT-0.70PT ceramic possesses the maximum remnant polarization of Pr ~ 34.9 μC/cm2. Meanwhile, a highest piezoelectric coefficient of d33 ~ 271 pC/N and a high field piezoelectric strain coefficient of  ~ 560 pm/V are achieved at morphotropic phase boundary (MPB) composition of 0.38BNT-0.62PT. The maximum value of strain ~0.31% is obtained in the 0.36BNT-0.64PT ceramic. The largest electromechanical coupling coefficient kp is 44.5% for 0.37BNT-0.63PT ceramic. These findings demonstrate that BNT-PT ceramics are a system of high-performance Pb-reduced ferro/piezoelectrics, which will be very promising materials for piezoelectric devices. This study offers an approach to developing and exploring new lead-reduced ferroelectric ceramics with high performances.  相似文献   

10.
Lead zinc niobate-lead titanate (PZN-PT) system is of particular interest for scientific researches and commercial applications due to the unique relaxation feature and superior electromechanical responses. However, it is difficult to prepare polycrystalline ceramics near the morphotropic phase boundary due to the stability of a competing lead niobate pyrochlore phase. BaTiO3 (BT) was reported to be an effective perovskite phase stabilizer at a cost of reduction in Curie temperature and piezoelectric properties. Herein, the amount of BT in PZN-PT-BT system and the sintering conditions were optimized to simultaneously stabilize the perovskite phase and maintain high dielectric and piezoelectric response. An optimum piezoelectric coefficient d33 ∼ 870 pC/N along with a Tm ∼ 133 °C and an electromechanical coupling coefficient k33 ∼ 0.61 was obtained in the PZN-8PT-6BT ceramics sintered at 1100 °C. The low sintering temperature, wide processing window, and improved dielectric and piezoelectric properties make PZN-PT-BT ceramics potential candidates for piezoelectric devices.  相似文献   

11.
Although rare earth neodymium (Nd) doping is common in Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) single crystals, it is rarely reported in PMN–PT ceramics. To explore the effect of Nd doping on PMN–PT ceramics, PMN–30PT:xNd3+ (x = 0%, 1%, 2%, and 3%) relaxor ferroelectric ceramics were fabricated using a solid-state method via two-step sintering. An enhanced piezoelectric charge coefficient (d33) of ∼870 pC/N and a high piezoelectric strain coefficient (d33*) of ∼1025 pm/V were achieved for x = 2%. Through Rayleigh analysis of polarization–electric field (PE) hysteresis loops under small electric fields, it was found that the dielectric property was mainly influenced by the intrinsic contribution (local lattice distortion). Furthermore, by investigating domain configurations, high piezoelectric properties were found to be associated with the domain size reduction and local structural heterogeneity. The results indicate that the PMN–30PT:xNd3+ ceramics is a promising material for electronic devices, and that rare earth Nd doping is an efficient strategy for improving the electronic performance of Pb-based relaxor ferroelectrics.  相似文献   

12.
1% Sm substituted PMN-29PT ([Sm0.01Pb0.985][(Mg1/3Nb2/3)0.71Ti0.29]O3) textured ceramics with a Lotgering factor of up to 80 % were successfully prepared. The dielectric, ferroelectric and piezoelectric properties have been investigated in detail for both textured and non-textured ceramics. The heterogeneous templates are found to be critical for the change in relaxor behaviors, leading to the reduced Tf, Tm, εmax and Pr in textured ceramics. The textured ceramics show an enhanced d33 of 810 pC/N, about 1.6 times greater than their randomly oriented ceramic counterparts. The domain structures and their responses to applied electric fields have been studied using piezoresponse force microscopy, signifying the enhanced extrinsic contributions by the increased domain wall densities and dynamics. The improved dielectric and piezoelectric properties are discussed and explained from the view point of extrinsic contributions in textured ceramics. The results demonstrate that the textured Sm-PMN-PT piezoelectric ceramics could be promising high performance piezoelectrics with low cost.  相似文献   

13.
The screen-printing multilayer grain growth (MLGG) technique is successfully applied to alkaline niobate lead-free piezoelectric ceramics. Highly textured (K0.5Na0.5)NbO3 (KNN) ceramics with 〈0 0 1〉 orientation (f = 93%) were fabricated by MLGG technique with plate-like NaNbO3 templates. The influence of sintering temperature on grain orientation and microstructure was studied. The textured KNN ceramics showed very high piezoelectric constant d33 = 133 pC/N, and high electromechanical coupling factor kp = 0.54. These properties were superior to those of conventional randomly oriented ceramics, and reach the level of those of textured KNN ceramic prepared by tape-casting technique. Compared with other grain orientation techniques, screen-printing is a simple, inexpensive and effective method to fabricate grain oriented lead-free piezoelectric ceramics.  相似文献   

14.
Notwithstanding the advances in improving piezoelectric properties through templated grain growth, insights into the mechanical stress and microstructure of such materials are necessary. This is because the properties can be significantly varied depending on these parameters. Constructing heterostructure templates (2D–0D), in which the 0D nanoparticles have compositions similar to that of matrix powders, has significant potential in improving the above aspects. Here, BaTiO3 (BT) templates and elements-doped (K,Na)NbO3 (KNN) matrix powders were selected. Heterostructure BT (h-BT) templates were prepared by nucleation and growth of dopant-free KNN nanoparticles on bare BT. h-BT enabled a reduction in the mechanical stress at the interfaces within textured ceramics (h-BT-KNN), leading to larger grain growth and a higher texturing degree than those of textured ceramics (BT-KNN) fabricated using bare BT. The h-BT-KNN exhibited the enhanced piezoelectric constant (d33) by ~170% and ~600% compared to those of the BT-KNN and nontextured ceramics, respectively.  相似文献   

15.
<001> oriented xBi(Mg1/2Ti1/2)O3-(0.7-x)Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (BMT-PMN-PT) textured ceramics are successfully fabricated by the template grain growth method using BaTiO3 platelets as template. BMT-PMN-PT textured ceramics with different BMT contents are studied in terms of crystal structure, microstructures, dielectric and ferroelectric properties, and electric field induced strain. The as-fabricated BMT-PMN-PT textured ceramics were found to have a strong orientation along <001> direction. The frequency dispersion of dielectric constant of BMT-PMN-PT textured ceramics increases gradually and its relaxability becomes stronger with increasing BMT content. A large electric-field induced strain (0.42 % at 4 kV/mm) is obtained in 0.25BMT-0.45PMN-0.3PT textured ceramics with Lotgering factor 0.94, which is about 83 % enhancement than that of the randomly oriented ceramics (0.23 % at 4 kV/mm). The strain of 0.25BMT-0.45PMN-0.3PT textured ceramics have a relatively high thermal stability, with a slight decrease from 0.42 % to 0.28 % in the temperature range of 20−100 °C. Our research suggests that 0.25BMT-0.45PMN-0.3PT textured ceramics have a greatly potential for actuator devices applications owing to its advantages of large electric field induced strain response.  相似文献   

16.
A ternary ferroelectric ceramic system, (1?x?y)Pb(In1/2Nb1/2)O3xPb(Zn1/3Nb2/3)O3yPbTiO3 (PIN–PZN–PT, x = 0.21, 0.27, 0.36, 0.42), was prepared using a two‐step precursor method. The phase structure, dielectric, piezoelectric, and ferroelectric properties of the ternary ceramics were systematically investigated. A morphotropic phase boundary (MPB) was identified by X‐ray diffraction. The optimum piezoelectric and electromechanical properties were achieved for a composition close to MPB (0.5PIN–0.21PZN–0.29PT), where the piezoelectric coefficient d33, planar electromechanical coupling factor kp, and remnant polarization Pr are 660 pC/N,72%, and 45 μC/cm2, respectively. The Curie temperature TC and rhombohedral to tetragonal phase transition temperature TR?T were also derived by temperature dependence of dielectric measurements. The strongly “bended” MPB in the PIN–PT system was found to be “flattened” after addition of PZN in the PIN–PT–PZN system. The results demonstrate a possibility of growing ferroelectric single crystals with high electromechanical properties and expanded range of application temperature.  相似文献   

17.
In this work, templated grain growth (TGG) and reactive templated grain growth (RTGG) texture techniques combined with uniaxial hot pressing were used for the first time to produce high dense monolithic textured 0.6PMN–0.4PT ceramics. Microstructural analysis of the textured ceramics showed that both TGG and RTGG texture methods are efficient to promote anisotropic grain nucleation around the SrTiO3 single crystal templates. The structural data remarkably revealed that although there was no previous reaction of the powder to form the lead magnesium niobate–lead titanate (PMN–PT) compound in the RTGG samples and the ceramic phase formation was 100% perovskite indicating that RTGG texture technique is more attractive than TGG in the case of SrTiO3 templated PMN–PT. Rather, dielectric characterizations performed in the RTGG samples parallel and perpendicular to the template axis revealed a high anisotropy in the electrical permittivity for RTGG samples (1.48) that were comparable to an estimated value for 0.62PMN–0.38PT single crystals. Piezoelectric characterization of RTGG samples resulted in strain levels up to 0.34% and the highest d33 coefficient was 1100 pC/N, which showed significant increase compared to random ceramic.  相似文献   

18.
Lead-based ferroelectric materials are extensively employed in industrial applications and everyday life due to their excellent ferroelectric and piezoelectric performance. Pb(Ni1/3Nb2/3)O3-PbTiO3 (PNN-PT) is a typical binary relaxor ferroelectric system, whose refined structure and piezoelectric properties have not been systematically investigated. In this study, evolution of electric field-based crystal structure and variation of ferroelectric, piezoelectric, as well as dielectric properties with composition and temperature of (1 − x)PNN-xPT (0.32 ≤ x ≤ 0.36) ceramics were studied in full detail. The optimal performance is obtained at 0.66PNN-0.34PT with maximum piezoelectric coefficient d33 of 560 pC/N and large dielectric constant of 28 684. In situ high-energy synchrotron diffraction was employed to determine structural origins of enhanced properties of 0.66PNN-0.34PT. Interestingly, crystal structure of poled 0.66PNN-0.34PT ceramic is determined to be single monoclinic phase. Furthermore, both its lattice parameters and volume variation present butterfly shape under electric field. It is demonstrated that macroscopic strain of 0.66PNN-0.34PT stems mainly from intrinsic structure. The present study provides evidence for the relationship between microstructure and macroscopic properties, which is beneficial to the design of new materials with piezoelectric properties.  相似文献   

19.
To explore new relaxor‐PbTiO3 systems for high‐power and high‐temperature electromechanical applications, a ternary ferroelectric ceramic system of Pb(Lu1/2Nb1/2)O3–Pb(In1/2Nb1/2)O3–PbTiO3 (PLN–PIN–PT) have been investigated. The phase structure, dielectric, piezoelectric, and ferroelectric properties of the as‐prepared PLN–PIN–PT ceramics near the morphotropic phase boundary (MPB) were characterized. A high rhombohedral‐tetragonal phase transition temperature TR‐T of 165°C and a high Curie temperature TC of 345°C, together with a good piezoelectric coefficient d33 of 420 pC/N, were obtained in 0.38PLN–0.20PIN–0.42PT ceramics. Furthermore, for (0.8?x)PLN–0.2PIN–xPT ceramics, the temperature‐dependent piezoelectric coefficients, coercive fields and electric‐field‐induced strains were further studied. At 175°C, their coercive fields were found to be above 9.5 kV/cm, which is higher than that of PMN–PT and soft P5H ceramics at room temperature, indicating PLN–PIN–PT ceramics to be one of the promising candidates in piezoelectric applications under high‐driven fields. The results presented here could benefit the development of relaxor‐PbTiO3 with enhanced phase transition temperatures and coercive fields.  相似文献   

20.
We have investigated the electromechanical response of potassium sodium niobate (K0.5Na0.5NbO3 or KNN) thick films. The high‐field strain hysteresis loops and weak‐field converse piezoelectric d33 coefficient of the films were measured and compared with those of KNN bulk ceramics under the same electric field conditions. The converse d33 values of the thick films and bulk ceramics were equal to 82.5 and 138 pm/V, respectively, at 0.4 kV/mm. The fundamental difference between the piezoelectric response of the KNN films and the ceramics was studied in terms of the effective (“clamped”) piezoelectric d33 coefficient. The reduction in the piezoelectric d33 coefficient of the KNN films, resulting from the clamping by the substrate, was compared to lead‐based ferroelectric thick films, including Pb(Zr,Ti)O3 (PZT) and (1 ? x)Pb(Mg1/3Nb2/3)O3?xPbTiO3 (PMN‐PT). We propose a possible explanation, based on the particular elastic properties of KNN, for the small relative difference observed between the “clamped” and “unclamped” (“bulk”) d33 of KNN, in comparison with lead‐based systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号